• Select Aire (SA) systems are dual refrigeration circuit dehumidifiers.

• Systems remove between 55 and 340 pounds of moisture per hour.

• Refrigeration circuits consist of scroll compressors for high performance and long life.

• Models feature 8-row evaporator coils for high moisture removal capacity.

• SA systems include an exclusive exhaust air heat recovery system and patented air flow balancing.

• SA’s dual refrigeration circuit design allows staging to minimize energy consumption and optimize energy recovery.
DANGER

ONLY TRAINED, QUALIFIED PERSONNEL SHOULD INSTALL AND/OR SERVICE DESERT AIRE EQUIPMENT. SERIOUS INJURY, DEATH AND PROPERTY DAMAGE CAN RESULT FROM IMPROPER INSTALLATION/SERVICE OF THIS EQUIPMENT. HIGH VOLTAGE ELECTRICAL COMPONENTS AND REFRIGERANT UNDER PRESSURE ARE PRESENT.

Desert Aire
Dehumidification Equipment
Standard Limited Warranty

Desert Aire warrants the dehumidifying unit to be free from defects in materials and workmanship subject to the terms, conditions and limitations stated herein.

TERMS

Desert Aire warrants all components (except as noted) for a period of two (2) years from the date of shipment. This warranty shall be limited to the supply of new or rebuilt parts for the part which has failed because of defects in workmanship or material, and does not include the cost for labor, transportation or other costs not herein provided for. Replaced parts are warranted only for the remaining portion of the original warranty period.

CONDITIONS

The warranty is subject to the following conditions:

1. The unit must be properly installed and maintained in accordance with the Desert Aire “Installation and Operation Manual” provided with each unit and/or other documentation provided.

2. The Start-Up Report must be completed and returned to Desert Aire Service for evaluation. If no deficiencies are identified a Warranty Validation Letter will be issued that provides all warranty dates and coverage. If installation or start-up deficiencies are present, these must be corrected and communicated to Desert Aire in order to activate warranty.

3. This warranty shall not apply to any part that has been tampered with, or has been subject to misuse, negligence or accident. A warranty can be obtained for altered equipment but only with written consent from Desert Aire.

4. The following parts and components are excluded from the warranty: belts, filters, driers, fuses and refrigerant.

5. Refrigerant coils or other components that corrode due to improperly balanced pool chemistry or corrosive air quality will not be warranted.

6. All replacements or repairs will be FOB Germantown, WI.

7. This warranty shall be null and void if defects or damages result from unauthorized opening of the refrigerant circuit, tampering with factory set controls, or operating outside the original design conditions.
8. Desert Aire shall not be liable for labor costs incurred in diagnosing the problem, or the removal or replacement of the part or parts being repaired.

9. Desert Aire must preauthorize all warranty coverage described herein.

Extended Warranty:
Your Desert Aire unit may have extended warrantees beyond this Standard Limited Warranty document. Extended warrantees are only available at the time of the purchase of the original equipment. These extended warrantees are covered under a separate document and their terms and conditions are separate from this document. It is mentioned in this document for informational purposes only. Any Extended Warranties will be identified on the Warranty Validation Letter.

Any and all incidental or consequential damages are expressly excluded from this warranty. Some states do not allow the exclusion of incidental or consequential damages for personal injury, so the above limitations may not apply to you for certain damages. This warranty gives you specific legal rights, and you may also have other rights, which vary from state to state. No person or representative is authorized to make any warranty or assume any liability not strictly in accordance with the aforementioned.

Inquiries regarding warranty matters should be addressed to:

Desert Aire Corp c/o Service Manager
N120 W18485 Freistadt Road • Germantown, WI 53022
PH: (262) 946-7400 • FAX: (262) 946-7401 • E-MAIL: service@desert-aire.com

Additional copies of this manual can be purchased for a nominal fee from Desert Aire. Desert Aire also posts the most current revision of our I/O Manuals on our website. For a digital copy of the I/O Manual for your unit revision, please submit request to the contact information listed above.

Gas Heat Exchanger Ten (10)-Year Prorated Warranty Terms (For SA™ units with gas heat only)
Desert Aire offers an extended prorated eight (8)-year warranty for gas heat exchanger. All other heater components are covered under the initial 2 year warranty.

2 Years Parts Only from date of shipment. Prorated from years 3-9 as follows:

Year 3: Desert Aire warrants 70% of replacement price
Year 4: Desert Aire warrants 60% of replacement price
Year 5: Desert Aire warrants 50% of replacement price
Year 6: Desert Aire warrants 40% of replacement price
Year 7: Desert Aire warrants 30% of replacement price
Year 8: Desert Aire warrants 20% of replacement price
Year 9: Desert Aire warrants 10% of replacement price
Safety Labels are used throughout this manual. They comply with the ANSI Z535.4 Standard. Please be familiar with the following labels and their definitions.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible death or injury.

![DANGER]
Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

![WARNING]
Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

![CAUTION]
Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury.

![CAUTION]
Caution used without the safety alert symbol indicates a potentially hazardous situation which, if not avoided, could result in property damage.

Product Warning for the State of California:

![WARNING]: Cancer and Reproductive Harm - www.P65Warnings.ca.gov
TABLE OF CONTENTS

1 Introduction .. 9
 1.1 Inspection ... 9
 1.2 Freight Damage Claims .. 9
 1.3 Rigging ... 9
 1.3.1 Rigging the Dehumidifier ... 9

2 Installation ... 11
 2.1 Position and Service Clearance ... 11
 2.2 Outdoor Air and Exhaust Air (When Equipped) .. 15
 2.2.1 Units with Outdoor Air Only .. 16
 2.2.2 Units with Exhaust Air Energy Recovery ... 18
 2.3 Condensate Drain Piping ... 20
 2.4 Pool Water Piping ... 21
 2.5 Auxiliary Heat Coil Piping ... 23
 2.6 Remote Condenser (Optional) .. 24
 2.7 High Voltage Wiring ... 25
 2.8 Controls and Sensors ... 25
 2.8.1 Air Temperature/Humidity Sensors .. 25
 2.8.2 Water Temperature Sensor ... 26
 2.8.3 Installation of Sensors for the SelectAire™ with Integral Exhaust Fan 26
 2.8.3.1 Indoor Static Sensor Installation .. 26
 2.8.3.2 Outdoor Static Sensor ... 27
 2.8.4 Installation of Optional VOC Monitoring Sensor ... 28
 2.9 Auxiliary Heating Control Wiring .. 29
 2.9.1 Auxiliary Heating - Dry Contact Closure .. 29
 2.9.2 Auxiliary Heating - Proportional Signal .. 30
 2.10 Gas Heater (Optional) ... 30
 2.10.1 Gas Heater Installation ... 31
 2.10.1.1 Gas Heater Installation with Roofcurb .. 31
 2.10.1.2 Gas Heater Installation with Housekeeping Pad or Dunnage ... 31
 2.10.1.3 Mating Flanges ... 31
 2.10.1.4 Heater Alignment ... 32
 2.10.1.5 Outdoor Units: B-Vent Support Set-up Instructions 33
 2.10.1.6 Indoor Unit Set-up Instructions .. 36
 2.10.1.7 Finalize Installation ... 36
 2.10.2 Gas Heater Start-up ... 36
 2.11 Auxiliary Pool Water Heating ... 37
 2.12 Smoke Alarm Interlock .. 37
3 Start-Up Procedures .. 39
3.1 Preliminary Inspection .. 39
3.2 Airflow Balancing ... 40
 3.2.1 Airflow Setup of SelectAire™ without Integral Exhaust Fan 41
 3.2.2 Airflow Setup of SelectAire™ with Integral Exhaust Fan 43
 3.2.3 Final Air Balancing ... 47
3.3 Refrigeration Testing .. 51
3.4 General Testing ... 53
3.5 Routine Maintenance Schedule ... 53
 3.5.1 Service Every Month ... 53
 3.5.2 Service Every Six Months ... 54
4 Troubleshooting .. 55
4.1 The Blower Does Not Run .. 55
4.2 The Compressor(s) Do Not Run ... 55
4.3 High Pressure Alarms / Readings Above 575 PSIG ... 56
4.4 Low Pressure Alarms / Evaporator Coil Icing ... 57
4.5 The Pool Water Is Too Cold ... 57
5 Appendix ... 59
5.1 Compressor Failure ... 59
 5.1.1 Compressor Replacement ... 59
5.2 Recommended Duct Design ... 62
5.3 Pool Water Chemistry ... 63
5.4 Recommended Controller Settings ... 63
 5.4.1 Controller Set Points ... 63
5.5 System Operating Modes ... 63
5.6 Component Replacement, Charge, Evacuation, & Leak Instructions 64
5.7 System Rating Plate ... 68
5.8 Start-Up Supervision Supplemental Information .. 68
5.9 System Start-Up Report .. 71
Start-Up Report .. 72
 Compressor Replacement Form ... 78
1 Introduction

Desert Aire dehumidifiers are designed to provide years of reliable service when installed properly. Read these instructions carefully before you install the dehumidifier.

1.1 Inspection
Desert Aire inspects and tests each dehumidifier before it leaves the factory so that you receive a quality piece of equipment. Unfortunately, equipment may become damaged in transit. Inspect the dehumidifier carefully before signing the receiving papers. Check for both visible and concealed damage. Use a halogen leak detector to check the piping for refrigerant leaks.

1.2 Freight Damage Claims
If the dehumidifier has been damaged, document the extent of the damage. Take pictures if possible. Next, obtain a claim form from the carrier. Promptly fill out and return the form. Carriers may deny claims that you have not filled out within a week of delivery. Notify Desert Aire of any damage.

1.3 Rigging

WARNING

1. Failure to observe rigging instructions may lead to equipment damage, personal injury or death.
2. Lifting method and procedure must comply with all local and national codes and regulations.
3. The use of safety slings in addition to lifting lugs is required.
4. Do not lift the dehumidifier in high winds or above people.

Desert Aire dehumidifiers are solidly built and can be very heavy. Avoid personal injury and damaged equipment by planning the installation carefully. Use moving equipment whenever possible.

1.3.1 Rigging the Dehumidifier
Desert Aire dehumidifiers are equipped with four or more lifting lugs. Use spreader bars and safety straps when you use these lugs for rigging.

- Utilize all of the lifting lugs provided when hoisting unit.
- Test-lift the dehumidifier to verify that it is properly balanced.
- Do not lift the dehumidifier in high winds or above people.
- The top panels are not designed to support the weight of persons. The top panels are weather proofed and excessive weight may cause water to penetrate through cracked seams. Damage incurred through caved or distorted top panels will not be covered under warranty. If you must walk on the top panels, carefully walk on the edges where structural integrity is greatest.
Large System Rigging

Notes:
1. The number of lifting points will vary between units. All lifting points must be used to lift unit.
2. Spreader bar must be used. Unit top panel is not designed to handle loading.
3. Lifting method/procedure to comply with all local and national regulations.
4. Use safety slings (not shown) in addition to lifting lugs.
5. Be sure that the lifting hooks do not contact the sides of the unit.
6. Use appropriate lifting strategy for unit.

Figure 1 - Typical Rigging for the SA Dehumidifier

CAUTION

1. Do not tip the dehumidifier on it's side.
2. Avoid dropping the unit down stairways or subjecting it to severe mechanical shock.
2 Installation
Manual applies to standard unit configurations only.

2.1 Position and Service Clearance
Desert Aire dehumidifiers require routine maintenance to operate efficiently.

• Allow a minimum of 36 inches of clearance around the service side of the dehumidifier for piping, electrical connections, and service access. Install the unit on a sturdy, level mounting base or platform that will prevent vibration and sound transmission. Never install the dehumidifier on a wooden platform without consulting the design engineer for spring isolation requirements and sound control materials. Do not install the unit near occupied rooms such as offices or guest rooms.

• Level the dehumidifier to ensure proper condensate drainage.

• Install blocks under the unit if necessary to provide clearance for the condensate trap. Install blocks underneath each corner and each lifting lug.

![Figure 2 - Dehumidifier with Blocks Installed for Trap Clearance](image)

• Install outdoor dehumidifiers equipped with an outdoor air intake away from plumbing vents, furnace flues, or equipment which could contaminate the air supply.

• If the dehumidifier is to be mounted on a roof curb, make sure that the curb has been properly mounted and supported. Place gasketing around the perimeter of the curb before setting the dehumidifier in place. This will help prevent air or water leaks.

• You must not install an indoor rated dehumidifier in an unconditioned space or where ambient temperatures can fall below 45°F. If you must install the dehumidifier outside or in an unconditioned space, you must use an outdoor rated dehumidifier. Desert Aire equips outdoor-rated units with weatherproofing and thicker insulation. You can determine if your unit is outdoor-rated by inspecting the unit rating plate. (See Section 5.7 in the Appendix for details.)

• **Duct design and installation should conform to ASHRAE and SMACNA low velocity duct standards.** See Section 5.2 in the Appendix for additional duct recommendations.
FLEXIBLE NEOPRENE DUCT CONNECTOR

LOCATE ANODIZED ALUMINUM RETURN AIR GRILLE AS HIGH AS POSSIBLE IN ROOM.

INSTALL TURNING VANES IN ALL ELBOWS.

INSULATED OUTSIDE AIR INTAKE DUCT, (SIZE FOR CODE REQUIREMENTS)

MOTOR OPERATED DAMPER

WEATHER-PROOF INTAKE HOOD

REMOTE CONDENSER

TEMPERATURE AND HUMIDITY CONTROLS

MECHANICAL EXHAUST WITH BACK-DRAFT DAMPER (WALL OR ROOF MOUNTED)

NOTE: CAPACITY SHOULD NOT EXCEED INTAKE VOLUME.

Figure 3 - Basic Pool Room Layout
Use turning vanes whenever the duct makes an abrupt turn, especially in the return air duct. Poor return air distribution will reduce the moisture removal.

Figure 4 - Typical In-Ground Duct Layout

- You may use galvanized sheet metal ducts for all but underground installations and severely corrosive environments.
- Do not use fiberglass duct boards or acoustic duct liner for air distribution in highly humid applications, such as pool room dehumidification.
- If a duct must be installed in an unconditioned area, or if you are installing an outdoor air intake duct, insulate it with two inches of fiberglass duct wrap with an intact vapor barrier.
- Direct the supply air toward skylights, exterior walls and windows, and spectator areas. Since air movement will increase the evaporation rate of the pool, direct the supply air grilles away from its surface.
Figure 5 - Soffit Duct Layout with Skylight Grille

- Install return air grilles or louvers as high as possible in the enclosure. Normally, one centrally-located grille will be adequate. Avoid under sizing this grille or “short-circuiting” of air with nearby supply registers.
- Select grilles and diffusers for low static pressure loss and proper throw and CFM rating.
- Keep the noise criteria levels of the grilles between 35 and 45 dB.
- Use anodized aluminum grilles to prevent premature corrosion.
2.2 Outdoor Air and Exhaust Air (When Equipped)
Desert Aire SelectAire™ dehumidifiers may be equipped with an opening which will draw outdoor air into the conditioned space. This will help you to comply with ASHRAE Standard 62, which requires the introduction of outdoor air into commercial buildings.

Additionally, the SelectAire™ unit may be equipped with a fan and dampers for exhausting air from the building. This ensures that the building is at a negative static pressure relative to adjacent spaces and outdoors. Should the unit be equipped with an outdoor air option only and no exhaust fan is integral to the unit, it is the installer’s responsibility to ensure that a separate exhaust fan is installed and properly interlocked with the outdoor air operation. Dry contacts for signaling the fan are provided.

Several modes may be available that provide for different outside air and exhaust flow rates. These include:

- **Unoccupied mode**
 In the Unoccupied mode, typically outdoor air dampers will be closed and a very small amount of exhaust air is extracted from the building in order to ensure the space is negatively pressurized. When a Low Exhaust option is selected, the Unoccupied mode can be configured to bring in low flow rate of outdoor air in order to offset any amount of exhaust that may be extracted from this separate system. Unoccupied mode is engaged when no other mode is presently engaged.

- **Occupied mode**
 This mode is used when a typical amount of occupancy in the space is to be encountered. Occupancy can be commanded with any of the following: Internal Occupancy Schedule via an integral seven-day programmable time clock, a contact closure, or through the Building Management System (BMS) network.

- **Event mode**
 This mode is typically used to signal the unit to bring in greater amounts of outdoor air when spectators are expected to be present. The mode can be activated through a dry contact closure or Building Management System (BMS) network. Note that the Occupied mode must be engaged when Event mode is commanded or no change will occur.

- **Max OA mode**
 Max OA mode is typically used to signal the unit to bring in a very high level of outdoor air under specific circumstances. If equipped with the economizer option, outdoor sensors monitor the OA condition. When the outdoor conditions are appropriate to reduce the temperature and/or humidity, the unit will index to MAX OA mode automatically. Additionally, if equipped with a VOC monitor option, and the VOC reading from the sensor exceeds the set point, the unit will index to Max OA mode. The mode
can be activated programmatically as described above or through the Building Management System (BMS) network.

- **Purge mode**
 Purge mode is used to clear airborne byproducts of the pool disinfection process as required by the operator. This is typically done when the space is not occupied. When the need is determined, a signal is given via a contact closure or through the Building Management System (BMS) network. The unit will bring in the specified amount of outdoor air (typically at a very high flow rate).

 During purge mode the refrigeration system is disabled. The heating system is controlled from the supply air temperature sensor only and is set to a point that only avoids major condensation from occurring at the ducts and diffusers. In this way, the energy required to clear the air of these byproducts is minimized while avoiding issues with introducing very cold air.

In all modes the unit monitors the static pressure of the zone and modulates the exhaust airflow rate to maintain the set point. Typically this is set to -0.050 WC. This means that the exhaust air flow rate will be greater than the outdoor air flow rate to maintain this negative static. Building envelopes that are leaky may require much more exhaust air than outdoor air. The amount of outdoor air in each mode may be limited through the controls if desired, but the space must be kept at a negative static pressure in order to avoid mold and property damage.

Note that condensation may occur when cold outdoor air is mixed with warm, humid return air inside the dehumidifier. During the winter months, this moisture can freeze and cause serious damage to the equipment. Desert Aire dehumidifiers are equipped with an internal temperature sensor which will close the outdoor air damper if it senses freezing temperatures inside the unit.

If outdoor temperatures in your area drop below 32°F, and outdoor air code compliance is required at all times, you may need to install a preheating coil. System failures caused by improper outdoor air duct installations are not covered by the Desert Aire warranty.

The ducting method you use depends on the SA type of dehumidifier you have.

2.2.1 Units with Outdoor Air Only

There are three possible configurations for the outdoor air openings when equipped with outdoor air only:

1. A SelectAire™ unit configured for Outdoor Air with Damper has a duct connection with an outdoor air damper and actuator between the evaporator and the reheat condenser coils. The unit controlled will energize a set of dry contacts during occupied times. Use these dry contacts to control an additional outdoor air damper if required and/or the exhaust blower. The exhaust blower and the outdoor air louvers, filters, additional dampers, and actuators must be field-supplied. Figure 6 shows typical ducting for a SelectAire™ unit configured for Outdoor Air with Damper.
2. A SelectAire™ unit configured for indoor installation with Outdoor Air with Damper and Filter option has a module which contains filters and a factory-installed damper and actuator. This module has a flanged opening for a field-installed outdoor air duct. The unit controller will energize a set of dry contacts during occupied times. Use these dry contacts to control the exhaust blower. Outdoor air louvers and the exhaust blower must be field-supplied. Figure 7 shows typical ducting for an indoor SelectAire™ unit configured for Outdoor Air with Damper and Filter.

3. A SelectAire™ unit configured for indoor installation with Outdoor Air with Damper and Filter option has a module which contains filters and a factory-installed damper and actuator. This module has an outdoor air intake protected by a weather hood. The unit controller will energize a set of dry contacts during occupied times. Use these dry contacts to control the exhaust blower.
contacts to control the field-supplied exhaust blower. Figure 8 shows typical ducting for an outdoor SelectAire™ unit configured for Outdoor Air with Damper and Filter.

![Figure 8 - Outdoor Dehumidifier with Filter and Damper Module](image)

The outdoor air duct used for options 1 and 2 must be insulated to prevent condensation from forming on it during the winter. Since cold outdoor air can cause moisture to condensate and freeze on surfaces when it mixes with the warm, humid return airstream, you must preheat the outdoor air whenever possible.

2.2.2 Units with Exhaust Air Energy Recovery

There are two possible configurations for units containing Exhaust Air Energy Recovery:

1. An indoor SA unit with Exhaust Air Energy Recovery contains a module which handles outdoor makeup air and exhaust air. This factory-installed module includes filters, dampers, actuators, and an exhaust blower. This module has flanged openings for the outdoor and exhaust air ducts. The ductwork and louvers must be field-supplied. The humid exhaust air may form an icy fog when it blasts outside during the winter. Install the outlet grille in a location where this fog will not damage the building or create a safety hazard. Figure 9 shows typical ducting for an indoor SelectAire™ unit configured for Exhaust Air Energy Recovery.
2. An outdoor SA unit with Exhaust Air Energy Recovery contains a module which handles outdoor makeup air and exhaust air. This factory-installed module includes filters, dampers, actuators, and an exhaust blower. The module ordered for an outdoor unit discharges the exhaust air to the atmosphere and draws in outdoor air. Both air streams are protected by a weather hood.
2.3 **Condensate Drain Piping**

The condensate drain connection on the standard Desert Aire SA series dehumidifiers is a 1-1/2” PVC stub which penetrates the base rail of the unit.

![Figure 11 - SA Standard Condenser Drain Location](image1.png)

An SA series dehumidifier ordered for roof curb mounting has its drain connection on the underside of the unit to help prevent freezing. This drain has a 1-1/2” MPT fitting.

![Figure 12 - SA Roof Curb Unit Showing Condensate Drain Location](image2.png)

Whichever type of drain your dehumidifier has, it must be trapped to prevent condensate from backing up in the drain pan. The cabinet of the dehumidifier is under negative pressure whenever the supply blower is running. If you do not trap the drain, condensate will be sucked into the cabinet, where it may cause premature corrosion and property damage.
Trap the condensate connections as shown in Figure 13. The P-trap dimensions in Figure 13 are sized for a maximum return air static of 2.0" W.C. If your return air static exceeds this specification, consult Desert Aire for help in resizing the P-trap.

You may also need to install a cleanout tee or plug near the trap. Note that the drain opening in the drain pan is off-center to simplify its cleaning and servicing. Once you have designed and installed the trap, follow this sequence:

1. Connect the trap to a main drain line with 1/4" of downward pitch per linear foot of run.
2. Support the drain pipe every five feet to prevent sagging.
3. After you install the drain piping, prime the trap by pouring water into the drain pan of the dehumidifier.

CAUTION

Condensate drain lines installed in an unconditioned space must be heat taped to prevent freezing. Check the heat tape yearly before winter operation.

2.4 Pool Water Piping

The Desert Aire dehumidifier may be equipped with an optional pool water heating condenser. Use copper or schedule 80 CPVC pipe and fittings to adapt to the water circuit of the dehumidifier. See Figure 14 for recommended pool water piping. Note that this figure is intended to be a general guide only, and may not match your installation exactly.

All piping must meet state and local codes.
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Supply Air</td>
</tr>
<tr>
<td>2</td>
<td>Duct Heater (Gas, Electric, Etc.)</td>
</tr>
<tr>
<td>3</td>
<td>Flex Duct Connector</td>
</tr>
<tr>
<td>4</td>
<td>Piping to Remote Condenser</td>
</tr>
<tr>
<td>5</td>
<td>Desert Aire Dehumidifier</td>
</tr>
<tr>
<td>6</td>
<td>Filter Rack Assembly with Filters</td>
</tr>
<tr>
<td>7</td>
<td>Return Air</td>
</tr>
<tr>
<td>8</td>
<td>Vibration Isolators</td>
</tr>
<tr>
<td>9</td>
<td>P-Trap</td>
</tr>
<tr>
<td>10</td>
<td>Base (If Required)</td>
</tr>
<tr>
<td>11</td>
<td>Check Valve</td>
</tr>
<tr>
<td>12</td>
<td>Ball Valve</td>
</tr>
<tr>
<td>13</td>
<td>Flow Meter</td>
</tr>
<tr>
<td>14</td>
<td>Main Pool Heater</td>
</tr>
<tr>
<td>15</td>
<td>Auxiliary Pump</td>
</tr>
<tr>
<td>16</td>
<td>Filter Assembly</td>
</tr>
<tr>
<td>17</td>
<td>Main Pool Pump</td>
</tr>
<tr>
<td>18</td>
<td>Water Temp Sensor (Dry Well)</td>
</tr>
<tr>
<td>19</td>
<td>Water Inlet</td>
</tr>
<tr>
<td>20</td>
<td>Water Outlet</td>
</tr>
</tbody>
</table>

Figure 14 - Typical Pool Water Piping Diagram
• You may not need an auxiliary pump if the main pool pump has sufficient pressure to overcome the elevation and the resistance of the water piping to the dehumidifier. If the main pump will be cycled on and off, you must use an auxiliary pump.

• If you use an auxiliary pump and you intend to cycle the main pump, you must size the auxiliary pump to overcome the resistance of the main pool piping and filters.

• The dehumidifier is equipped with a built-in flow switch. If there is no water flow to the unit, the refrigeration circuit will be locked out of the pool water heating mode. All other modes, such as dehumidification and cooling, will function normally. Desert Aire recommends continuous water flow to the unit to prevent vapor lock, pump cavitations, and nuisance head pressure trips.

• You must install an air eliminator at any high points in the pool water piping. Excess air in the Desert Aire pool water condenser will cause inadequate pool heating and high operating temperatures and may shorten the life of the dehumidifier.

Dehumidifiers equipped with the pool water heating option come with a factory-supplied water temperature sensor and an aqua stat well. See Section 2.8 for details on control and sensor location.

<table>
<thead>
<tr>
<th>Water Circuit Size</th>
<th>Water Flow Rate and Pressure Drop: Pool</th>
<th>Water Flow Rate and Pressure Drop: Spa</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/10 Ton</td>
<td>20 GPM @ 25 ft W.C.</td>
<td>27 GPM @ 35 ft W.C.</td>
</tr>
<tr>
<td>15 Ton</td>
<td>30 GPM @ 25 ft W.C.</td>
<td>40 GPM @ 35 ft W.C.</td>
</tr>
<tr>
<td>20 Ton</td>
<td>40 GPM @ 25 ft W.C.</td>
<td>53 GPM @ 35 ft W.C.</td>
</tr>
<tr>
<td>25 Ton</td>
<td>50 GPM @ 25 ft W.C.</td>
<td>67 GPM @ 35 ft W.C.</td>
</tr>
<tr>
<td>30 Ton</td>
<td>60 GPM @ 25 ft W.C.</td>
<td>80 GPM @ 35 ft W.C.</td>
</tr>
</tbody>
</table>

Figure 15 - Standard Unit Water Flow Rates (for Units Equipped with this Option)

2.5 Auxiliary Heat Coil Piping

The Desert Aire dehumidifier may be equipped with an optional hot water or steam air heating coil. This coil, when properly sized, will provide space heating during the winter months.

• You must use proper practice when you design and install the coil piping to prevent poor coil performance, shortened service life, or damage to the coil.

• The supply connections must not be supported by the coil headers.

• The control valve should be sized according to the pressure and flow rate requirements, not the coil connection size.

• On steam systems, size the trap for at least 2-1/2 times the design condensing rate to allow for high condensate flow on system start-up.

• On steam systems, use strainers, dirt pockets, and isolation valves to prevent clogging the control valve and to simplify service.

• Install swing joints in the connection piping to prevent damage to the coil header for thermal expansion.

• Use a backup wrench on the pipe stubs when attaching connections to prevent damage to the header.
2.6 Remote Condenser (Optional)

Important: Refer to the separate Air Cooled Condensers Installation and Operation manual for additional details on line design, traps, clamping, and other condenser installation requirements. Desert Aire SA series dehumidifiers are pre-charged with enough refrigerant to fill the Remote Condenser and up to 50 feet of refrigerant lines. No additional charge is required unless your line set is longer than 50 feet. Figure 16 below indicates the tubing diameters to be used up to 50’ in length.

Linesets longer than 50 feet may require additional oil and refrigerant charge at the time of field installation. Line diameters may also be larger than the table below. Refer to the submittal documentation or label adjacent to the remote condenser connections to confirm the charge and lines for those systems.

SA Series Remote Condenser Line Size (R-410A)

<table>
<thead>
<tr>
<th>Model</th>
<th>Circuit A</th>
<th>Circuit B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hot Gas Line (Discharge)</td>
<td>Liquid Line (Return)</td>
</tr>
<tr>
<td>SA18</td>
<td>1-1/8</td>
<td>5/8</td>
</tr>
<tr>
<td>SA20</td>
<td>1-1/8</td>
<td>5/8</td>
</tr>
<tr>
<td>SA24</td>
<td>1-1/8</td>
<td>5/8</td>
</tr>
<tr>
<td>SA30</td>
<td>1-3/8</td>
<td>3/4</td>
</tr>
<tr>
<td>SA35</td>
<td>1-3/8</td>
<td>3/4</td>
</tr>
<tr>
<td>SA40</td>
<td>1-3/8</td>
<td>3/4</td>
</tr>
<tr>
<td>SA45</td>
<td>1-3/8</td>
<td>7/8</td>
</tr>
<tr>
<td>SA50</td>
<td>1-3/8</td>
<td>7/8</td>
</tr>
<tr>
<td>SA60</td>
<td>1-5/8</td>
<td>1-1/8</td>
</tr>
</tbody>
</table>

Figure 16 - Remote Condenser Line Size Summary (for Units Equipped with this Option).

Performance rated at return air conditions of 82°F/60%RH, 50’ Actual line length/62.5’ Equivalent line length.

2.7 High Voltage Wiring

You must follow all local codes when you connect the high-voltage wiring to the dehumidifier. Attach the wires to the three-pole power block mounted on the electrical panel. Test the phasing by “bumping” the blower contactor. Verify that the blower rotates in the proper direction. If it turns the wrong way, switch any two of your wires at the power block.

WARNING

1. Disconnect power before servicing. The unit contains high voltage wiring and moving parts which may cause serious injury or death.
2. Failure to properly wire the dehumidifier may create the possibility of shock and can lead to premature system failure.
Some equipment may contain a variable speed drive for the supply fan. The fan will run the correct direction regardless of the input power. In these cases, the compressor must be “bumped” to determine if it is pumping correctly. Use the controller display to view the analog inputs and briefly energize one of the compressor contactors. The discharge pressure should increase and the suction pressure should decrease when phasing is correct. Do not run the compressors in reverse rotation for an extended period of time as damage will result.

To assist in compliance with NEC and local codes, a second lug connected to the service panel in equipment with pool water condensers is provided. This lug is intended to be connected to the pool equipotential bonding grid in the field when required by code. This also removes the possibility of differences in potential between metals in the pool water and the water condenser that may accelerate corrosion. The bonding lug should be connected to the equipotential grid with 8 AWG or larger solid copper conductor.

2.8 Controls and Sensors
The standard Desert Aire SA series dehumidifiers are controlled by a microprocessor controller. This controller monitors conditions such as room humidity and temperatures and controls the dehumidifier accordingly. A separate controls manual has been provided. Refer to this separate manual for controller and sensor specifications, operation, and options.

2.8.1 Air Temperature/Humidity Sensors
Duct Mount Temperature/Humidity Sensor
Install the duct-mount sensor in the return air duct upstream of any outdoor air intakes.

• Do not mount the sensor in a section of duct where false readings may occur due to dead air regions, solar heat gain, or thermal losses in winter.
• Do not mount the sensor where water is likely to drip on it. Liquid moisture will ruin the humidity sensing element in the sensor.
Wall Mount Temperature/Humidity Sensor
If your dehumidifier was ordered with a wall-mount humidity and temperature sensor, mount the sensor about five feet above the pool deck on an interior wall with natural air circulation. Avoid the following locations:

- Hot spots near concealed heating pipes, warm air ducts, supply register outlets, or solar radiation.
- Cold spots due to a cold wall or drafts from stairwells, doors, windows, or supply register outlets.
- Dead spots such as behind doors or in corners where room air cannot circulate freely.

A supply air temperature sensor and duct holder is also provided to be installed downstream of any field provided heaters. Mount this in the supply duct and seal the penetration. Install at least 5 ft. downstream of all heaters and not in the “line of sight” of the heater elements as the radiant heat produced by the heater may affect the reading.

2.8.2 Water Temperature Sensor
Desert Aire dehumidifiers ordered with the pool water heating option are supplied with a water temperature sensor and an aqua stat well.

- Screw the well into an adapter fitted into the pool water piping. The well is equipped with a 1/2” MPT connection.
- Install the sensor upstream from the dehumidifier such that the inlet water temperature is sensed. The Aux pool water heater should not be installed upstream of the dehumidifier. Install heater downstream or in parallel with dehumidifier.
- The sensor must be installed in a location where it will accurately sense the pool water temperature. This means you must have continuous water flow at the sensor location.

2.8.3 Installation of Sensors for the SelectAire™ with Integral Exhaust Fan
In pool applications, it is critical to maintain negative space pressurization relative to adjacent spaces and the outside ambient. This prevents moisture laden air from being driven into the wall cavities and condensing. The SelectAire™ unit includes provisions to measure the differential in static pressure between the space and the outdoors and helps to maintain this negative static pressure in the space.

2.8.3.1 Indoor Static Sensor Installation
The indoor static pressure sensor should be mounted in a location not subject to damage from occupants. Place the sensor as far as practical from doors, grilles, and operable windows that may cause pressure fluctuations. Locate a minimum of 3’ above the floor level in the pool area. Note that in rooms with extremely high ceilings (greater than 30’) it is preferable to locate the sensor a minimum of halfway up the wall. This is due to building stack effect where the pressure may become higher at the ceiling than at the floor.
The sensor can be mounted directly to drywall or to a standard single gauge electrical box. 50’ of 1/8” clear pressure tubing is supplied with the sensor. Route the tubing such that it will not be subject to damage. Do not directly attach the tube to surfaces that may become very cold such as suction lines or supply ducts as condensation may occur in the tubing. Connect the tubing to the static pressure differential transducer in the unit. The correct port is labeled for the indoor air sensor.

![Figure 18 - Indoor Static Pressure Sensor (rear view)](image)

2.8.3.2 Outdoor Static Sensor

A complication in measuring the building static pressure is the dynamic action of the wind. Measuring the wind’s pressure instead of the true outdoor static pressure will alter the actual static pressure reading. Proper mounting of the outdoor static sensor will help ensure accurate readings.

The outdoor air static pressure sensor should be mounted at least 12 inches above surrounding obstacles and a minimum of 24 inches from a wall or Air Handling Unit. Do not mount under awnings or other projections within fifteen feet. Do not mount near economizers, intakes or exhaust fans, or barometric dampers. Do not mount within 10’ of building corners or parapet walls.
A detailed drawing of the outdoor static sensor assembly is included with the package. Assemble mounting bracket and tubing per this drawing.

50’ of 1/8” opaque pressure tubing is supplied with the sensor. Route the tubing such that it will not be subject to damage. Do not directly attach the tube to surfaces that may become very cold such as suction lines or supply ducts as condensation may occur in the tubing. It is recommended that all of the tubing length be used as this helps buffer any fluctuation in the sensor readings due to wind gusts. Excess tubing should be coiled at some convenient location rather than cut.

Connect the tubing to the static pressure differential transducer in the unit. The correct port is labeled for the outdoor air sensor. Closely observe that the indoor static pressure sensor and outdoor static pressure sensor are installed on the proper ports as labeled.

2.8.4 Installation of Optional VOC Monitoring Sensor
Desert Aire offers an optional VOC monitoring sensor that can trigger a greater flow rate of outdoor air when indoor contaminants reach a user determined concentration. This sensor can be mounted in a space that represents the typical breathing zone for occupants.
The back mounting plate is suitable for mounting on a 2” x 4” J-Box or directly to drywall. Screws are provided.

Three wires are required and terminals on the sensor can accommodate 16 to 22 AWG. 18 AWG wire can be used up to 500 ft. run. Terminate wires as shown on the low voltage diagram.

Check to ensure that the sensor output has been set for 0-5 VDC output. The J3 jumper should be set in the storage position. See data sheet supplied with sensor for additional details.

2.9 Auxiliary Heating Control Wiring

Note: You must use the Desert Aire control system to control or interlock with the room heating system. This prevents wide fluctuations in room air temperature. It also prevents the heater from trying to heat the room while the dehumidifier is running in cooling.

Desert Aire will provide a signal to operate the auxiliary pool room heating system. The signal can either be a binary dry contact closure or a proportional voltage with an optional dry contact closure to operate an interlock or pump. The heating output type is pre-set from the factory based on the request at the time of order.

2.9.1 Auxiliary Heating – Dry Contact Closure

Desert Aire will provide a dry contact closure to interlock with the building heating system. This contact closure is normally used to interlock with a gas or electric duct heater which has its own power supply transformer. When the room air temperature drops below the set point, the dry contact will close to energize the auxiliary heater. See the dehumidifier wiring diagram for details.
2.9.2 Auxiliary Heating – Proportional Signal

Desert Aire will provide a proportional signal to modulate a heating coil control valve on units equipped with an integral heating coil.

This signal is reverse acting or direct acting depending on the settings in the controller. It is critical that units with hot water and steam coils be set properly for freeze protection. See controller manual for details on the settings and outputs.

The SA dehumidifiers are equipped with a local man-machine interface on the face of the unit controller located inside the electrical box of the unit. A separate, optional remote display terminal can be ordered for service or remote access. See the controller manual for details on wiring and environmental limits.

Most proportional valves have either three or four terminals for field-installed wiring.

- Four-terminal valves have two terminals for 24 VAC power and two terminals for the signal input.
- Three-terminal valves have one terminal for the “hot” 24 VAC input, a second terminal for the “positive” signal input, and a third, common terminal for the “neutral” 24 VAC input and the “negative” signal input.

You must follow the instructions included with the valve cut sheet. Observe the proper polarity, or you may damage both the valve and the Desert Aire controller. See the unit wiring schematics for information on signal wire connection points.

When the proportional signal is ordered, the binary heating output acts as an interlock. This can be used to activate a pump, valve, or interlock that needs to be coordinated with the proportional heating signal. The contact rating is shown on the electrical schematic. Use a transformer and relay to energize loads that are higher than the contact rated current draw or power.

2.10 Gas Heater (Optional)

Several optional gas heater sizes and configurations are available to provide for heating of the outdoor air during cold conditions. Several sizes, heat exchanger designs, and combinations of capacities are available in natural gas or liquid propane fuel. Additionally, custom configurations can be specified. The installation instructions below are guidelines for gas heater installation. Refer to the separate gas heat instruction manual for additional instructions.

- Corrosive environments may reduce gas heater service life. This furnace is not to be used for temporary heating of buildings or structures that are under construction. Many of the chemicals used during construction form acid-bearing condensate when burned. This can substantially reduce the life of the heat exchanger.
- **LP Only:** Seamless copper tubing may only be used with gases that are not corrosive to it. See the note below to check with your LP gas supplier before using copper. Seamless copper tubing must comply with standard type K or L for seamless copper water tube, ASTM B 88; or seamless copper tube for air conditioning field service, ASTM B 280.
• Measures should be taken to prevent the entry of corrosive chemicals or vapors to the combustion and ventilation air supply. Such chemicals include but are not limited to chlorinated and/or fluorinated hydrocarbons such as found in refrigerants, aerosol propellants, dry cleaning fluids, degreasers, and removers. Other harmful compounds may come from bleaches, air fresheners or mastics. Vapors from such products can form acid compounds when burned in a gas flame. Should acid compounds form in your furnace; it may reduce the lift of the furnace. Please follow these guidelines for providing outside air directly to the appliance to avoid this problem.

• Hazards of Chlorine – The presence of chlorine vapors in the combustion air of gasfired heating equipment presents a potential corrosive hazard. Chlorine, found usually in the form of Freon or degreaser vapors, when exposed to flame, will precipitate from the compound, and go into solution with any condensation that is present in the heat exchanger or associated parts. The result is hydrochloric acid which readily attacks all metal including 300 grade stainless steel. Care should be taken to separate these vapors from the combustion process. This may be done by wise location of unit vent terminal and combustion air inlet with regard to exhausters or prevailing wind directions. Remember, chlorine is heavier than air. This fact should be kept in mind when determining installation location of these heaters and building exhaust systems.

2.10.1 Gas Heater Installation

2.10.1.1 Gas Heater Installation with Roofcurb
If the system was ordered with a roofcurb from Desert Aire, the curb will have provisions for mounting the unit and heater in specific locations. Place the main unit first. Verify proper placement of the unit before setting the heater. Set the heater per the General Arrangement drawing. The inside of the support rails should be located outside the support cross beams. When the unit is located in accordance with the General Arrangement drawing, fix it in place with the tie-down brackets provided.

2.10.1.2 Gas Heater Installation on Housekeeping Pad or Dunnage
Refer to the General Arrangement drawing for relative heights and distances between the unit and the heater. Note that some heaters may need to be set on supports such that the airflow discharging from the supply fan is properly distributed over the heater elements. Use dunnage or other supports to raise the heater to the correct height as required.

2.10.1.3 Mating Flanges
Mating flanges, provided by Desert Aire, should be installed in the front and rear heater duct openings for the field ductwork to affix to. The selfdrilling screws should be installed at the inside of the opening as should below. Once the mating flanges are attached, sealant should be applied liberally around the flange-heater interface. Ductwork may then be connected between the unit and
the heater. The transition duct must be surrounded by insulation and vapor barrier. This will need to be completed at the front and rear of the heater.

<table>
<thead>
<tr>
<th>Tools Required (Not Included)</th>
<th>Included Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Driver</td>
<td>Mating Flanges (8)</td>
</tr>
<tr>
<td>3/8" Driver Bit</td>
<td>#14 Self-Drilling Screws</td>
</tr>
<tr>
<td>Sealant</td>
<td></td>
</tr>
<tr>
<td>Vapor Barrier</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 21 - Gas Heater Mating Flanges](image)

2.10.1.4 Heater Alignment

In outdoor installations, the outdoor curbs lift the heater such that the centerline of the blast openings of the fan and the centerline of the drum of the heater are at equal elevations. In order to ensure proper airflow distribution, dunnage may be required under the heater to keep the centerline elevation. Failure to lift the heater to the proper elevation may lead to shortened heater life.

After placing the unit and the heater, but before ducting between the two, adjust the coiled pressure tap tube located in the heater such that the tip of the tube is across from the center of the blower blast area (see Figure 22). Orient the tip of the tube such that the opening points towards the fan blast area.
2.10.1.5 **Outdoor Units: B-Vent Support Set-up Instructions**

For outdoor units, connect supplied B-type vent to flue gas. It is important to support the B-vent. Here are eight step by step instructions and images to set-up the flue B-vent. Below are lists of the necessary tools and parts required to perform the installation process.

<table>
<thead>
<tr>
<th>Tools Required (Not Included)</th>
<th>Included Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Driver</td>
<td>#14 Self-Drilling Screws (12)</td>
</tr>
<tr>
<td>3/8" Driver Bit</td>
<td>Screw Tip Covers (12)</td>
</tr>
<tr>
<td>Locking Pliers (Vise-Grip)</td>
<td>1/4"-20 x 5/8" Bolt (2)</td>
</tr>
<tr>
<td>Work Gloves</td>
<td>1/4"-20 Nut (2)</td>
</tr>
<tr>
<td></td>
<td>1/4" Washers (4)</td>
</tr>
</tbody>
</table>

Figure 22 - Gas Heater Alignment

Figure 23 - Gas Heater B-Vent Support
1. Measure the distance between the bottom of the B-Vent tee and the top of the vent cap. Affix the collar approximately 75-80% of distance from the bottom of the vent stack. Ensure the mounting tabs are directed away from the heater.

2. Remove the rearmost screw from the front heater roof panel (see below).

3. Install the angle such that the flange is oriented towards the heater using the screw from Step 2. Tighten the screw such that the angle is held snugly but can still be rotated.
4. Install second angle such that the flange is oriented towards the heater using the 1/4" nut and bolt provided. Tighten the nut and bolt such that the angle is held snugly but can still be rotate.

Figure 26 - B-Vent second angle flange

5. Using locking pliers, bend the two angles at their flanges such that they meet up and overlap. Once in position, use the locking pliers to hold angles together.

Figure 27 - B-Vent flanges together
6. Drive self-drilling screws through the existing clearance holes into the angle material at a minimum of two overlapping holes per surface.

7. Cap the screws with the rubber tip covers provided. Tighten all screws, nuts and bolts.

8. Repeat steps 2-7 to connect the rearmost heater screw to the collar.

2.10.6 Indoor Unit Set-up Instructions
For indoor units, follow heater manufacturer instructions for discharge gas vent piping.

2.10.7 Finalize Installation
Connect communication and power wiring from the unit to the heater. Be sure to keep conduit clear of door openings. Connect gas lines per heater manufacturer instructions. Install transition duct between SA unit and heater. Insulate transition duct.

2.10.2 Gas Heater Start-Up
Place the unit into heating mode. Verify the induction fan begins running. Verify the switch on the top of the controller is switched to “ON” (not “TEST”). Allow the unit to reach steady state. Use a flue gas analyzer in the flue gas duct and document O_2 (%), CO (ppm), Efficiency (%), CO_2 (%), and gas temperature.
2.11 Auxiliary Pool Water Heating

A properly sized Desert Aire dehumidifier equipped with the pool water heating option can maintain the pool water temperature under normal conditions. However, like any refrigerated dehumidifier, the Desert Aire unit may require days to heat a recently-filled pool by itself. For this reason, you should install an auxiliary pool heater.

Desert Aire dehumidifiers ordered with the water heating option are provided with a set of dry contacts for controlling an auxiliary pool water heater. The dehumidifier will be the primary source of water heating. If it cannot keep up with the demand for pool heat, the Desert Aire controller will then energize the auxiliary water heater.

Note: Do not use the aqua stat mounted on the auxiliary heater for temperature control. This can lead to excessive water temperature fluctuation. It may also permanently prevent the dehumidifier from heating pool water if the set point of the heater aqua stat is higher than the water heating set point of the dehumidifier.

2.12 Smoke Alarm Interlock

Desert Aire SA series dehumidifiers are equipped with a set of terminal blocks for interlocking with the smoke alarm (alarm provided and installed by others). The smoke alarm contacts must be rated for at least 15 amps at 24 VAC. The contacts must break when smoke is present. This will shut off the blower(s) and compressors. See the dehumidifier wiring diagram for connection details.
Start-Up Procedures

Read this section thoroughly before attempting to commission the Desert Aire dehumidifier. A complete start-up will minimize operational problems and expensive callbacks. The start-up will be quicker and easier if there is a heat and humidity load present in the space. Energize any auxiliary air and pool water heaters before the start-up so that the air and water are at their design temperatures. Crankcase heater should be energized for 24 hours before refrigeration system is allowed to operate.

3.1 Preliminary Inspection

Verify that all contractors have completed their work. Find the Desert Aire “SA Start-Up Report”, which is located near the back of this manual. You must fill out the start-up report to validate the dehumidifier warranty. Check the following items:

• Before starting unit, remove wooden shipping blocks found beneath compressor(s).
• Before starting unit, remove shipping restraining brackets on supply blower equipped with the spring isolation base, if applicable.
• Verify that the incoming power supply matches the rating plate of the dehumidifier. The fused disconnect and the power supply wiring must be rated to handle the minimum ampacity rating printed on the rating plate.
• With the power supply disconnected and locked, tighten all field and factory electrical connections.
• Check and adjust the belt tension for proper deflection at the midpoint of the blower belt(s).
• The deflection is based on the belt length. The belt length can be found on the belt itself. Determine the force using the Belt Deflection Force table in Figure 30.

<table>
<thead>
<tr>
<th>Belt Length</th>
<th>Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>25” to 50”</td>
<td>0.25”</td>
</tr>
<tr>
<td>51” to 70”</td>
<td>0.375”</td>
</tr>
<tr>
<td>71” to 110”</td>
<td>0.625”</td>
</tr>
</tbody>
</table>

Figure 29 - Specified Belt Deflection Table
Belt Deflection Force Table

<table>
<thead>
<tr>
<th>HP</th>
<th>1 Belt</th>
<th>2 Belts</th>
<th>3 Belts</th>
<th>1 Belt</th>
<th>2 Belts</th>
<th>3 Belts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3</td>
<td></td>
<td></td>
<td>2 - 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td>5 - 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>12</td>
<td>7</td>
<td></td>
<td>9 - 10</td>
<td>5 - 6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td></td>
<td>12</td>
<td>8 - 9</td>
<td></td>
<td>8 - 9</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 30 - Belt Deflection Force Table

- Check for proper phasing (three-phase units) by momentarily energizing the supply air blower. If the blower runs backwards, switch two of the power supply wires at the power block of the dehumidifier. When the blower rotates properly, the remainder of the motors in the system will be properly phased.
- Check for proper phasing of the optional remote condenser power supply. The fans will blow air vertically upward when they are phased correctly.
- Inspect the air filters in the dehumidifier. Replace them if necessary.
- Check the pool water piping on units equipped with the water heating option. Inspect for leaks and proper installation of components. Verify that the auxiliary pump operates, if one is used. Purge all air out of the pool water piping.
- Check the heating control valve and piping on dehumidifiers equipped with an optional hot water or steam heating coil.
- Verify that all sensors are installed and operating properly. Verify that all external wiring to dampers, exhaust blowers, auxiliary heaters, etc. is properly connected.
- Slowly open all refrigerant service valves, and tighten the valve stem packing nuts.
- Check the field and factory piping for leaks. The internal piping may have been damaged during shipping.

3.2 Airflow Balancing

To ensure code compliance and long equipment service life, proper airflow must be verified by a qualified air balancer. Before you balance the airflow, locate the motor control switches located in the electrical compartment of the dehumidifier.
Open the compressor switches to prevent the refrigeration system from running while you balance the air. Use the Low Voltage wiring diagram(s) to identify compressor knife switches.

3.2.1 Airflow Setup of SelectAire™ without Integral Exhaust Fan
The total airflow of a Desert Aire SA system can be checked by measuring the static pressure drop across the reheat condensers and the evaporator coils. The dehumidifier features an adjustable blower sheave to simplify air balancing.

Figure 32 - Dehumidifier Side View Showing Location of Air Balance Ports
(Balancing Port locations are symbolic, refer to Unit Labels for specific locations)
Procedure:

1. Check the condition of the return air and outdoor air filters. They should be relatively clean during the setup procedure. If in doubt, a measured pressure drop should be taken. Expected pressure drop is less than 0.5" WC for return air filters and 0.3" WC for outdoor air filters.

2. On the display, go to SERVICE MENU ➔ AIRFLOW SETTINGS ➔ AIRFLOW SETUP ➔ SUPPLY AIRFLOW SETUP. Set the Unocc Override to “On”.

3. Confirm outdoor air damper is closed.

4. Use a manometer or magnehelic pressure gauge to measure the static air pressure differential across the reheat condenser (ports #2 and #3 above).

5. Compare the actual value read with the value displayed for reheat coil pressure drop in the Reheat dp on the controller display. If these values differ more than 0.02" WC, adjust the offset of the controller pressure differential using the SENSOR OFFSETS screen in the SERVICE MENU such that the values agree. Ensure that the manometer or magnehelic pressure gauge is properly calibrated before making any adjustment.

6. The value for Reheat dp should be the same as the Target Reheat dp ± 0.02" WC. Should the Reheat dp be lower than the target, disconnect unit from power and adjust the sheave on the supply fan motor by turning this in and increasing the belt speed. Should the Reheat dp be higher than the target, open the adjustable sheave to decrease the belt speed.

7. Set Unit Mode to OCC. Confirm outdoor air damper opens and exhaust fan (by others) is energized.

8. Measure outdoor airflow rate with hood, duct traverse, or other measurement method appropriate for the installation. Airflow rate can be adjusted by the "OA" "Occ" damper setting in the DAMPER SETTINGS menu of the controls. Note that the flow rates for outdoor air are application specific. Refer to the mechanical equipment schedule or other indication from the building designer for required flow rates.

9. Use the manometer or magnehelic pressure gauge to measure the static pressure differential across the evaporator coil (ports #1 and #2 above). Reading should be within limits indicated on the label attached to the unit near the air balance ports.

10. Measure exhaust system air flow rate at the fans or blowers by others with hood, duct traverse, or other measurement method appropriate for the installation. Note that the flow rates for exhaust air are application specific. Refer to the mechanical equipment schedule or other indication from the building designer for required flow rates. Poolroom applications will require the exhaust air flow rate to be greater than the outdoor air to maintain a negative static pressure in the space.

11. Continue damper setup procedure for Event, Max OA, and Purge modes if the unit is equipped for any of these modes. Note that it is important to complete in this order as once Purge is initiated and then released from the override, the post-purge timed sequence that eliminates outdoor air is active. Controller power must be removed to discontinue post-purge timer early.
3.2.2 Airflow Setup of SelectAire™ with Integral Exhaust Fan
The SelectAire™ systems with Integral Exhaust Fan include features to help automate the setup and operation of the unit. The system is substantially automated and airflow balanced at the factory for the specified airflows and static pressures. At the time of start-up the supply airflow will be balanced for the actual field static pressures encountered.

In pool applications, it is critical to maintain negative space pressurization relative to adjacent spaces and the outside ambient. This prevents moisture laden air from being driven into the wall cavities and condensing. The SelectAire™ unit includes provisions to measure the differential in static pressure between the space and the outdoors and help to maintain this negative static pressure in the space.

CAUTION
The Desert Aire SA unit with exhaust fan contains operational controls that assist in maintaining the poolroom envelope at a negative static pressure. Proper setup allows these controls to operate as intended; however, these are not safety controls. It is the responsibility of the owner/operator to ensure that proper space pressurization of the envelope occurs. It is recommended that the pressurization be checked on a regular basis to ensure proper operation of all building systems and any issues corrected immediately.

Figure 33 - Dehumidifier Side View Showing Direction of Airflow
Supply Airflow Setup

1. Check the condition of the return air and outdoor air filters. They should be relatively clean during the setup procedure. If in doubt, a measured pressure drop should be taken. Expected pressure drop is less than 0.5” WC for return air filters and 0.3” WC for outdoor air filters.

2. With the unit supply fan and exhaust fan disabled, check the reheat pressure drop and space static pressure readings on the controller display. Each should be indicated as 0.00 +/- 0.02. If out of tolerance, a small offset can be placed in the control under SERVICE MENU SENSOR OFFSETS SCREEN. Also note that the wind direction and nearby objects can have an impact on the outdoor pressure reading. Review the installation guides for proper positioning. Review the tubing running to each location for kinks or obstructions. Review adjacent spaces for impact on poolroom pressure.

3. On the display, go to SERVICE MENU AIRFLOW SETTINGS AIRFLOW SETUP SUPPLY AIRFLOW SETUP. Set the Unocc Override to “On”.

4. The value for Reheat dp should be the same as the Target Reheat dp +/- 0.02” WC. Should the Reheat dp be lower than the target, disconnect unit from power and adjust the sheave on the supply fan motor by turning the adjustable flange inwards to make the effective diameter larger and increasing the belt speed. Should the Reheat dp be lower than the target, open the adjustable sheave flange to decrease the belt speed.

Exhaust and Outdoor Airflow Setup

The SelectAire™ system with Integral Exhaust Fan have sensors and controls that are self-balancing for exhaust and outdoor air flow rates. The unit set points are set at the factory based on the information entered at the time of order and each unit is tested to confirm that the flow rate is properly controlled.

A special outdoor airflow monitoring system in the SelectAire™ systems with Integral Exhaust measures and controls the outdoor air flow rate in each mode of operation. Flow rates are factory set and confirmed by measurement. The unique zone pressurization control feature helps to ensure the space is properly negatively pressurized by sensing this and controlling the exhaust airflow rate directly.

Desert Aire SelectAire™ units can be equipped with several different types of outdoor air and exhaust air modes of operation. A unit may be equipped with one or more of these modes of operation. Each mode will include a separate specification for outdoor air flow rate that is specified at the time of order. These modes may include:

- Unoccupied Mode
- Occupied Mode
- Event Mode
- Max. OA Mode
- Purge Mode

During startup it is only necessary to check that the static pressure encountered in the actual
installation are not exceedingly high and therefore limit the ability of the fan or damper systems.

Outdoor Airflow Setup

Note that the setup here contains instructions on the standard SelectAire™ unit operation. When very high ranges of outdoor air flow rates are encountered, additional hardware and software may be installed. A special system addendum will be sent with the order to describe this setup when required.

A standard SelectAire™ unit has the ability to monitor and control the outside airflow rate in all occupied modes. Each unit is preset with the flow rate specified at the time of order for each mode of operation. When setting up the unit, the capability for each mode should be confirmed.

- Unoccupied Mode Outdoor Air Setup (Units Equipped with Low Exhaust Option Only)

In certain installations equipped with a Low Exhaust duct or device, there may be a desire to exhaust air during unoccupied mode. The SelectAire™ system allows an Unoccupied Outdoor Air damper position. This allows some outdoor air into the space to relieve pressure during this mode. This will prevent slamming of doors and areas of unfiltered areas infiltrating the building envelope.

Setup in this mode is done based on a pressure in the zone.

1. Use controller display under SERVICE MENU AIRFLOW SETTINGS AIRFLOW SETUP and use the down arrow until the OA SETUP – UNOCC screen is shown. Set the Override to “On”.
2. Ensure that any Low Exhaust fan or device is operating in Unoccupied Mode.
3. Read the zone pressure on the display. The recommended pressure is -0.05” WC. Should the pressure be lower than this, the Unocc OA Set point setting can be increased.

- Outdoor Air Setup for All Other Modes

Each outdoor air mode should be confirmed

1. Use controller display under SERVICE MENU AIRFLOW SETTINGS AIRFLOW SETUP and use the down arrow until OA SETUP – OCCUPIED is shown. Set the Override to “On”.
2. Let the unit control loop stabilize. You will see the damper position modulate. The control loop may take up to 5 minutes to fully stabilize. At that time the Current OA CFM should match the mode OA CFM Stpt displayed. Note that some fluctuation is to be expected, particularly if heavy winds or wind gusts are directed towards the OA intake at that time, but on average the value will be close to the set point.
3. Note the OA damper position. Ensure this damper is not commanded to the minimum or maximum position. If this is the case, review to ensure the damper is physically moving and review the static pressure in the OA duct if this is an indoor unit.
4. If desired, measure the outdoor air flow rates through the use of direct measurement device such as hood, velgrid, or anemometer.
5. Repeat the procedure for the other outdoor air modes as desired by scrolling through the screens and changing the override for each mode. The modes available are dependent on the types requested at the time of unit order. These may include “Event”, “Max. OA”, and “Purge”. Note that controller power will need to be removed after completing “Purge” mode as the post-purge operation will lock out outdoor air operation for 30 minutes after purge.

The flow rate for each mode can be adjusted in the field through the controller, but it should be noted that there may be physical limitations to the amount of flow that can be introduced. Also, note that very low return air static pressures may limit the amount of outdoor air that can be introduced. If very low return air static pressures are encountered and there is a desire for high outdoor air flow rates, a restriction or damper may need to be placed in the return air duct. Consult the factory for further recommendations.

Exhaust Airflow Setup

The unit exhaust airflow rate should be confirmed for each mode that was specified at the time of order to ensure that the duct system static pressures encountered allow for proper flow and zone negative pressurization. Ensure all doors and windows to adjacent spaces or outdoors are closed before balancing the exhaust air.

1. Review the exhaust air flow rates for each mode programmed into the controller display under SERVICE MENU → AIRFLOW SETTINGS → AIRFLOW SETUP → MAX EXH. FLOW RATE. These settings have been factory pre-set to the airflow indicated at the time of unit order. It should be noted that these flow rates act as maximum flow rates for each mode of operation. The controls attempt to achieve a negative zone pressure.
2. Use the controller display under SERVICE MENU → AIRFLOW SETTINGS → AIRFLOW SETUP → EXHAUST AIRFLOW SETUP to set the Set Unit Override to the first mode to be tested. Set Exhaust Mode to “Cool”. Ensure the “Ex Max” is set to 100%. Unit will open the Cool Air Exhaust Damper downstream of the evaporator coil. Units specified with high amounts of exhaust air may also open the exhaust damper upstream of the coil in this mode.
3. Allow unit to stabilize. Fan speed, damper positions, and zone pressure should be relatively constant.
4. Review the fan speed. A speed of 90% or greater in any mode may indicate high exhaust duct static pressures or static pressure set point that is too high. Correct any issues with exhaust duct routing, size, or total length.
5. Review the zone static pressure. The recommended zone pressure is -0.050” WC for poolrooms. A building envelope that allows significant infiltration may not be able to achieve set point. **Positive pressures in a pool space will potentially cause condensation in the wall cavity, mold growth, and property damage.** Should the zone not reach pressure set point, it is highly recommended that the maximum CFM in the MAX EXH. FLOW RATE screen be increased for that mode of operation.
6. Review the actual zone static pressure through the use of independent measurement device
such as a manometer or magnehelic. This can usually be done by slipping the manometer tubing through a door or window leading outside.

7. If desired, measure the exhaust air flow rates through the use of direct measurement device such as hood, velgrid, or anemometer.

8. Repeat the procedure for the other modes as desired by changing the Exhaust Mode. The modes available are dependent on the types requested at the time of unit order. These may include “Unocc”, “Occ”, “Event”, “Max. OA”, and “Purge”. Note that controller power will need to be removed after completing “Purge” mode as the post-purge operation will lock out outdoor air operation for 30 minutes after purge.

It should be noted that filter changes are important to ensuring that exhaust air and outdoor air are able to be maintained at the proper flow rates. The SelectAire™ system operation will automatically adjust to accommodate normal increase in static pressure drop, but excessive filter loading will restrict airflow. Filters should be monitored and replaced as required.

Evaporator Settings and Cool Exhaust Airflow
There may be additional display screens for the evaporator and cool exhaust airflow. The values are present from the factory and optimized. No adjustment is required unless instructed by Desert Aire Service.

3.2.3 Final Air Balancing
Once the supply air and exhaust air setup have occurred, the unit will automatically adjust the damper positions and drive speed in each mode of operation.

The outdoor air damper will open and modulate to achieve the pre-determined pressure drop set point of the outdoor air stream pressure plate. This has been determined by the customer requested occupied mode flow rate and tested at the factory. The exhaust will be controlled by space pressurization and maintains the negative static pressure set point.

At this point there is a good opportunity to ensure that the commands for operational modes are being properly sent to the equipment. Command each mode of operation through the method that will be used on site. Depending on the mode and installation specific, this may occur through the internal time schedule, a contact closure, or the Building Management System.

CAUTION
The Desert Aire SA unit with exhaust fan contains operational controls that assist in maintaining the poolroom envelope at a negative static pressure. Proper setup allows these controls to operate as intended; however, these are not safety controls. It is the responsibility of the owner/operator to ensure that proper space pressurization of the envelope occurs. It is recommended that the pressurization be checked on a regular basis to ensure proper operation of all building systems and any issues corrected immediately.
Auxiliary Heating

Ensure that the supply air temperature sensor is downstream of any field installed auxiliary heaters.

The pre-programmed values for the deadbands, differentials, and PID values are expected to create a good balance between temperature control and stability in the typical applications. Occasionally the heater may have larger or smaller capacity relative to the space or sensor placement may be in an atypical location. If space conditions vary greatly or frequent cycling between modes are apparent, the values may need to be changed. Modification to the parameters and tuning should be done with care. If it is determined that a specific application would benefit from modification, time and patience will be required to ensure that the desired effect is achieved.

Staged Heating

When installed in a relatively mild climate with minimal outdoor air requirements, there is a relatively small amount of heating capacity. In these cases, staged heating is a cost effective and simple method.

The auxiliary heating outputs come set from the factory for control of staged control or modulating control as specified at the time of order. When set for Staged, the dry contact associated with the heating output will close on a drop in temperature of the zone set point minus the deadband minus the differential. The contact will remain closed until the temperature reaches the zone set point minus the differential.

Heater On = Zone Set point – Heating Deadband – Heating Differential
Heater Off = Zone Set point – Heating Deadband

Example:
- Zone Set point: 85°F
- Heating Deadband: 2°F
- Heating Differential: 1°F

In this example, the heater output will close at 82°F and will open at 83°F. Due to some system capacitance and sensor hysteresis, the actual zone condition may overshoot these values slightly, but should not overshoot these values to cause the unit to shift into a cooling mode. Should the heater be very oversized and the overshoot significant, it may be necessary to increase the deadband to prevent cycling between modes.

It should be noted that the nature of the staged heating will create a significant variation in the supply air temperature as the heater is turned on and off. Heaters are sized for extreme conditions (typically the 99th percentile heating capacity). At many times of the year the heater is essentially oversized. Depending on the location of the supply ducts and diffuser configurations, the variations may create drafts within
the space. Also, if the air temperature is very low and the heater cycles off, the supply air temperature may be lower than the space dew point. This would cause condensation on ducts, diffusers, and surfaces.

Should there be issues with supply temperature variations, modulating heat should be considered.

Modulating Heating

When the application has a moderate to extreme climate and outdoor air is specified, it is recommended that auxiliary heating be modulating.

When the controls are set for Modulating heat output, both the binary heat output contact and the modulating heat output are active. The binary heat output acts as an enable contact that can activate a gas heater enable signal or start a hot water coil pump system. The modulating output is intended to vary the gas valve, SCR electric heater, or hot water coil water flow rate.

The Modulating heating sequence works based on a Zone Reset of the Supply Air Temperature. When the zone temperature decreases to the Zone Temperature minus the Heating Deadband, the controller enables heating mode and starts to increase the calculated Supply Air Temperature Set Point. The heater output will modulate to maintain the calculated Supply Air Temperature Set Point. The heating mode is always disabled if the zone exceeds the Zone Temperature Set Point.

Resetting the supply air temperature in heating not only closely maintains the zone temperatures, but helps ensure the supply air temperature is held to minimum values. The default values used for the zone PID, supply air PID, and deadband are appropriate for most applications and heater sizes. Should the commanded Supply Air Temperature change too quickly, the PID action for the reset can be slowed by increasing the tuning values. Should the heater not be able to closely maintain the calculated Supply Air Temperature Set Point, the values for the heater output loop can be adjusted.

\[
\text{Heater Enabled} = \text{Zone} = \text{Zone Set point} - \text{Heating Deadband} \\
\text{Heater Disabled} = \text{Heat Output PID Loop} < 5\% \text{ or Zone} = \text{Zone Set Point}
\]

Example:

- Zone Set point: 85°F
- Heating Deadband: 2°F

In this example, the binary heater contact will close at 83°F and the analog output will start to increase. The PID loop will modulate to maintain the zone at the 83°F temperature. Should the analog signal for heat decrease to less than 5%, the binary contact will open. In addition,
if the zone is sensed at greater than 85°F at any point, the contact will open, limiting heater overshoot due to poorly tuned loop.

Final Review of the Unit Operation
Under typical circumstances, the unit will cycle into and out of a mode of operation over a period of time. This will typically continue until the environmental conditions change or another outside influence causes the load to differ. The duration of each cycle will depend on the unit capacity and the activity within the space as well as the building construction, set point, and ambient conditions.

The controller is programmed with minimum mode times that prevent short compressor cycles and quick indexing of modes. This minimum mode time is set at 360 seconds as a default. When the loads are very low and the unit is relatively large for the application, this may cause a slight overshoot in space condition for cooling and dehumidification. Frequent cycling between heating and cooling is not expected, however.

It is recommended that as a final check that the unit be released from all overrides, offsets, and returned to the expected set points. Observation of the typical operation under load is an invaluable tool in ensuring that all aspects of the system are working as anticipated. Observing the unit control the space for a few cycles is recommended. This can be done reasonably well as the tools and site is being cleaned up at the end of a startup or service call.

The following are examples of how the unit will be expected to operate in the typical loads encountered. Note that there are many variables in conditions and unit sizing. These are included to give basic understanding of the expected operation.

Ambient Condition Cool and Humid (Typical Spring Day)
Unit will be primarily in dehumidification mode and may cycle in 1st and 2nd stages of dehumidification. The hot gas reheat coil will be active most times. The unit may occasionally shift to cooling mode on one or both circuits, especially during mid-day when the solar load is high. During the night-time hours when the unit is unoccupied and ambient starts to cool, the unit will be in dehumidification mode less frequently and auxiliary heating may become active.

Ambient Condition Hot and Humid (Typical Summer Day)
Unit will be primarily in dehumidification mode and cooling active. The remote condenser will be active most times. The unit may occasionally shift to dehumidification mode on one circuit, especially as the solar load starts to decrease in the afternoon. During the night-time hours when the unit is unoccupied and ambient starts to cool, the unit will be in cooling mode less frequently and more frequently in dehumidification.
Ambient Condition Hot and Dry (Typical Early Fall Day)
Unit will be primarily in cooling mode with one or two circuits active. Depending on the load one or both of the circuits may cycle on and off to maintain condition. During the night-time hours when the unit is unoccupied and ambient starts to cool, the unit will be in cooling mode less frequently and auxiliary heating may become active.

Ambient Condition Cold and Dry (Typical Winter Day)
If the unit is equipped with exhaust energy recovery, and the controller senses the zone is dehumidified and temperature within the space is dropping, it will shift to energy recovery mode. This will energize the Circuit A compressor(s) and open the cool exhaust damper. This uses the refrigeration as a heat-pump to recover the energy in the exhaust air. This energy recovery can be considered the first stage of heating and will occur before the auxiliary heating is activated.

During the daytime the unit may occasionally be in dehumidification mode. Energy recovery will index on as required and auxiliary heating will become active as required to maintain space conditions.

Note that it is not uncommon for the unit to occasionally shift into cooling mode in the wintertime when the solar load is high and the envelope contains high number of south facing windows. This can occur down to 30°F or even lower in some cases.

Note, that in extreme cool and dry conditions when in occupied mode the outdoor air may dry the space significantly. When this is the case, the exhaust air may no longer have the energy to recover. The unit controls will disable the energy recovery mode when this occurs if the unit is equipped with the option.

3.3 Refrigeration Testing
Refrigerant based cooling systems are sometimes referred to as “sealed systems”. This is in reference to the refrigeration system being hermetically sealed, no refrigerant can leave the system and no contaminants are allowed inside. Factory equipment and procedures ensure a clean and tight refrigeration system where only the specified refrigerant and oil are in the system. This is a critical component to the longevity of the system.

Some Desert Aire systems are shipped in sections to allow for installation of some of the sections in a location much different than another. An example is a unit with a remote condenser ready circuit. The dehumidifier may be installed indoors near the conditioned space while the remote condenser used to reject waste heat is located outdoors. The piping of the condenser is completed in the field before the unit is commissioned. The design and processing of the field piping is just as important as the factory piping in ensuring the longevity of the system.

Selection of quality components, quality procedures, and full testing help to ensure that sealed system failures are minimized wherever possible. Nonetheless, the mechanical nature of many components
creates some unforeseen wear and failure in certain instances. Some units may need service at a point in the life of the product that requires opening of the hermetic refrigeration system. Special care must be taken to ensure that the system is returned to service without contamination.

Whenever servicing Desert Aire equipment, observe the following:

- Use only equipment rated for the pressures of the refrigerant being serviced.
- Use only equipment dedicated to service of the refrigerant in the system. Do not use equipment to service multiple refrigerant types.
- Purge all hoses and equipment of non-condensable gasses before connecting to the sealed system.
- Use only original equipment parts or factory approved equivalent for servicing.
- Use required refrigeration system oil.
- Minimize the time the system is open to atmosphere while servicing. Cap all connections where there is no active service work on the system. This is particularly important with units that contain POE oils as moisture will be absorbed quickly and cannot be removed with a vacuum.
- Never open the system while under a vacuum. Should system require opening to repair a leak or other service when in a vacuum, fill with dry nitrogen to atmospheric pressure before opening.
- Have a Schrader core replacement tool available when servicing the refrigeration system. Although rare, defective or damaged Schrader valve cores can contribute to refrigerant loss.
- Charge system only by weight after servicing. Review the rating plate and any field charge labels.
- When servicing, additional liquid line filter dryers and suction filters may be required. This does not apply to installation of remote condensers.
- Charge refrigerant blends, including R-410A and R-407C, with liquid only. Charging should be done into the high side of the system wherever possible. Refer to Section 5.6 for additional procedures related to charging.

Note that superheat should be stable within 7 degrees. The temperature and relative humidity listed in Figure 34 is the Return Air. Minimum value for superheat at compressor in all modes:

<table>
<thead>
<tr>
<th>Relative Air Temperature (°F)</th>
<th>60.0 - 65.0</th>
<th>65.1 - 70.0</th>
<th>70.1 - 75.0</th>
<th>75.1 - 80.0</th>
<th>80.1 - 85.0</th>
<th>85.1 - 90.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0 - 40.0</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>40.1 - 50.0</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>50.1 - 60.0</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>60.1 - 70.0</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>70.1 - 80.0</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

Figure 34 - Superheat Minimum Values Chart
3.4 General Testing
After you balance the airflow and test the refrigeration circuits, verify that the other equipment and accessories connected to the dehumidifier work properly. Although this may be difficult, since the dehumidifier is usually interlocked with a variety of equipment installed by different contractors, you must not skip this step.

Each of these devices (which may include auxiliary air and water heaters, smoke alarms, circulating pumps, and a building management system) is vital in maintaining the performance and comfort of the swimming pool environment. Many customer complaints are caused by improper interlocks between these devices. Make sure you check the following:

- Check the outdoor air and exhaust devices. The outdoor air and exhaust dampers must open when they receive an “occupied” signal from the dehumidifier. If you have installed an exhaust blower, make sure that it is interlocked with the “occupied” signal or with an end switch on the outdoor air damper actuator.
- Check the condensate drain to make sure it has been trapped and primed with water. Verify that it drains freely, with no leaks. If the drain is outside or in an unconditioned space, make sure it has been heat traced. If you installed a condensate pump, make sure it operates properly.
- Check the pool water piping to the dehumidifier (on units equipped with optional pool water heating). Make sure that all air has been bled out of the lines, and check that an air bleed valve has been installed at any high points in the water lines. If the circulating pump is not set for continuous operation, make sure it is properly interlocked with the dehumidifier. Temporarily shut off the water flow to the unit to verify that the factory-installed water flow proving switch operates correctly. Verify that the pool water temperature sensor has been installed where water will flow over it continuously. Verify that the pool water temperature sensor is on the water inlet of the unit.
- Check the operation of the remote condenser (on units equipped with this option). Make sure that the pressure transducers are wired to the condenser fan cycling control, the cut-in and cut-out pressures are correctly set per the remote condenser installation manual. Verify that the fans are blowing vertically upward when they run.
- Check the temperature and humidity readings displayed on the controller. If you think the values are incorrect, check the sensor or its field-installed wiring for damage. If necessary, check the voltage jumper on the temperature and humidity sensor. It must be set in the “0-10 VDC” position.

3.5 Routine Maintenance Schedule

3.5.1 Service Every Month

- Check and replace the air filters in the return duct and the outdoor air duct.
- Check for dirty coils in the dehumidifier. Clean them if necessary.
3.5.2 Service Every Six Months

- Check the blower belts for wear or glazing. Tighten or replace them if necessary. Do not use belt dressing compound.
- Check and tighten all field and factory electrical connections.
- Check for dirty coils in the dehumidifier and the optional remote condenser.
- Check and clean the drain pans and blow out the condensate drain line. If the drain is plugged, water will back up into the dehumidifier and flood the mechanical room.
- Check and adjust the air flow per specifications. Dirty ducts, filters, and coils may have reduced the total air volume.
- Check the operating pressures of the refrigeration circuits.
- Check the current draw of each blower motor.
- Check the current draw of each compressor.
- Lubricate the blower motor(s).
- Lubricate the supply blower bearings.

Suggested Grease Brands and Types

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Type</th>
<th>Base</th>
<th>Range temperature (min-max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINA</td>
<td>Marson HTL 3</td>
<td>Litium</td>
<td>-30°C / +120°C</td>
</tr>
<tr>
<td>SHELL</td>
<td>Alvania Fett 3</td>
<td>Litium</td>
<td>-20°C / +130°C</td>
</tr>
<tr>
<td>ESSO</td>
<td>Beacon 3</td>
<td>Litium</td>
<td>-20°C / +130°C</td>
</tr>
<tr>
<td>MOBIL</td>
<td>Mobilux EP3</td>
<td>Litium</td>
<td>-30°C / +130°C</td>
</tr>
</tbody>
</table>

NOTE: please have the following information available if you need to call the Desert Aire Service Department:

- Model Number
- Serial Number
- Room Temperature
- Relative Humidity
- Operating Refrigeration Pressures
- Water Temperature
- Compressor Amperages
- Blower Motor Amperage(s)
4. Troubleshooting

Although Desert Aire dehumidifiers have been designed for reliable and trouble-free operation, you may occasionally encounter a service-related problem. If you cannot immediately diagnose a fix to the problems, do not be intimidated by the apparent complexity of the dehumidifier. Your common sense and experience can help you solve the majority of these problems.

These problems or complaints are frequently caused by improper interlocks between the dehumidifier and the other equipment and accessories at the jobsite. You may need to consult with other contractors who have worked on different portions of this project. Read Section 3.4 for a more detailed list of interlocks.

The following list will help you diagnose some of the most obvious symptoms of a system which does not work properly.

4.1 The Blower Does Not Run

The standard Desert Aire dehumidifier is designed for continuous blower operation, which helps prevent air stratification, occupant discomfort, and structural damage to the ceiling and upper walls of the poolroom. Check for these problems:

- Check for power at the power block on the electrical panel of the dehumidifier.
- Verify that the incoming power matches the value printed on the unit rating plate.
- Check the branch fusing. Replace any defective fuses and determine why they failed.
- Use a voltmeter to trace the low-voltage control wiring. Determine if voltage is applied to the holding coil of the blower contactor.
- If there is no voltage at the holding coil, check the blower overload, the control transformer, the smoke alarm interlock, or the optional voltage monitor relay.
- If the dehumidifier uses a non-standard controller, or if the blower is cycled by the building management system, consult with the controls contractor.

4.2 The Compressor(s) Do Not Run

If a compressor doesn’t run even though the humidity in the poolroom is excessive, check the sequence of operation of the dehumidifier. Under certain situations the controller will lock out the compressors to prevent the pool room from overheating. See Section 5.5 in the Appendix for more details. If the problem is not controller-related, check the following:

- Check the “Compressor Fault” indicator on the controller display panel (for dehumidifiers with the standard controller). The fault indicator will flash if one of the compressor safety devices has tripped. The indicator will automatically stop flashing when the problem has been corrected. See the low-voltage wiring schematic for details on this fault circuit.
- Check for power at the power block on the electrical panel of the dehumidifier.
- Verify that the incoming power matches the value printed on the unit rating plate.
- Use a voltmeter to trace the low-voltage control wiring. Determine if voltage is applied to the holding coil of the compressor contactor.
- If there is no voltage at the holding coil, check the compressor overload and safety devices, the
control transformer, the smoke alarm interlock, the airflow proving switch, or the optional voltage monitor relay.

- If the dehumidifier uses a non-standard controller, or if the compressors are cycled by the building management system, consult with the controls contractor.
- Confirm that the compressor "knife" switches from air balancing section have been closed.

4.3 High Pressure Alarms/Readings Above 575 PSIG

The unit contains a pressure transducer and control sequence that will interrupt power to the compressor if the refrigeration system pressure is excessively high. The alarm will be active on the local display and the building management system (if equipped). The alarm can be reset at the main alarm screen on the display.

- Check that all service valves and ball valves in the compressor discharge line are fully open.
- Verify that the reheat condenser is clean and free from debris. Use a Magnehelic® or an inclined manometer to check the air volume through the reheat condenser. See Section 3.2 for more detailed instructions.
- Check that there is adequate water flowing through the pool water condenser (on units equipped with this option). Verify the operation of the water flow switch.
- Check the remote condenser fuses, fan motors, and fan cycling switches (on units equipped with this option). Verify that the fans are not obstructed and that they blow the air vertically upward.
- Check the three-way heat reclaim valve for proper operation. This valve, which is installed in the compressor discharge line, diverts hot refrigerant vapor to the various condensers (on units equipped with optional pool water heating or remote condensers). The valve spool may be stuck in the middle of the valve, where it blocks the outlets to both condensers. You can verify its operation by first running the compressor and then measuring the temperature of both condenser outlets. If the valve is shifting normally, the active condenser outlet will heat up rapidly.
- Check for air or other non-condensables in the refrigeration circuit. Desert Aire installs purge ports in the highest point of each condenser’s discharge line. To purge these gases from the system, temporarily run the compressor while you energize the selected condenser. Shut the compressor off, but continue to circulate cooling air or water through the condenser. Slowly depress the Schrader core at the high point purge of the condenser. You can do this procedure to keep the system running, but it is a temporary fix. It is not a longterm substitute for proper evacuation with a vacuum pump.
- If the dehumidifier uses an outdoor air duct with a field-installed preheating coil, verify that the coil is only active during the heating season.
- If the system is overcharged or excessively cold, migrating refrigerant can liquefy and fill a condenser and its discharge line during the “off-cycle”. If the compressor starts and the three-way valve shifts to this flooded condenser, the high pressure switch will trip almost immediately. Remote outdoor condensers are particularly susceptible to this problem during the winter months.
4.4 Low Pressure Alarms/Evaporator Coil Icing

The unit contains a pressure transducer and control sequence that will interrupt power to the compressor if the refrigeration system pressure is excessively low. The alarm will be active on the local display and the building management system (if equipped). In this active alarm state, the circuit will stop and not restart until the Suction Pressure in that circuit rises 48 psi above the Low Suction Pressure Trip Set Point. Although the circuit will restart automatically, the red ALARM LED on the display will stay lit until the alarm is acknowledged, even after the alarm condition is cleared, to alert the operator the alarm occurred. The alarm can be reset at the main alarm screen on the display.

- Check the return air ductwork. Poorly designed, restrictive ductwork can cause stratification or faulty air distribution. Resize the return air ductwork and grilles, or add turning vanes if necessary.
- Verify that the evaporator and return air filters are clean and free from debris. Use a Magnehelic® or an inclined manometer to check the air volume through the evaporator coils. See Section 3.2 for more detailed instructions.
- Check the temperature and humidity of the return air. The SA evaporators are designed for maximum efficiency at typical swimming pool conditions. If the return air wet bulb temperature drops below 60°F, these coils may frost. Never introduce unconditioned outdoor air into the return duct of an SA series dehumidifier!
- Check that all service valves and solenoid valves in the liquid line are energized or fully open.
- Verify that there are no restrictions or debris in the liquid line solenoid, the filter/drier, the expansion valve, or the distributor.
- Check to see that the system is properly charged and that the liquid line sight glass shows no bubbles. The refrigerant on an undercharged system can migrate to the coldest condenser on the “off cycle”, causing the receiver to lose its liquid seal.

4.5 The Pool Water Is Too Cold

This section applies to Desert Aire dehumidifiers with the pool water heating option. If the pool water requires heating, the standard controller will command the dehumidifier to heat the water. If the dehumidifier cannot heat the pool, due to inadequate water flow or no demand for dehumidification, the water temperature will drop slightly. The controller will then energize the auxiliary water heater, if one has been installed. See Section 5.5 in the Appendix for more details. If the problem is not controller-related, check the following:

- Make sure that the refrigeration circuit containing the pool water condenser has not locked out on a safety trip.
- Check the “Pool Water Flow” indicator on the controller display panel (for dehumidifiers with the standard controller). The fault indicator will flash if the water flow proving switch does not sense water flow. When this happens, the dehumidifier will not run in the pool water heating mode. All other modes will operate normally. The fault indicator will automatically stop flashing when the problem has been corrected.
- Temporarily raise the pool water heating set point to verify that the auxiliary pool heater energizes on call for second stage pool heat.
- If an auxiliary pool heater has not been installed, remove the “air/water priority” jumper from the electrical panel of the dehumidifier. See the wiring schematics and Section 5.5 in the Appendix for details.
- Make sure that the water filters are not clogged.
• Verify that the water condenser and pool water lines are free of fouling and scaling.
• Check that all service valves and solenoid valves in the liquid line are energized or fully open.
• Verify that there are no restrictions or debris in the liquid line solenoid, the filter/drier, the expansion valve, or the distributor.
5. Appendix

5.1 Compressor Failure

Although some compressors fail because they are mechanically flawed, most failures are due to system-related problems. Compressor failure can be caused by liquid flood back, air or moisture in the refrigerant system, solid contaminants, excessive heat or electrical service malfunctions. To avoid repeated callbacks, you must determine the cause of the failure and then correct it.

If the compressor has failed because its motor has burned out, the refrigerant oil, and piping may have become severely contaminated. If a burnout has occurred, use the following procedure to replace the compressor and clean the refrigerant system. Use an oil test kit to determine the severity of the burnout. Make sure you use rubber gloves and eye protection, as contaminated refrigerant and oil can cause severe burns!

CAUTION

You must clean the system thoroughly to prevent repeated compressor burnouts.

5.1.1 Compressor Replacement

Desert Aire dehumidifiers are designed with scroll compressors. Scroll compressors are known for operating more reliably than other compressors in air conditioning and dehumidification applications due to their ability to cope with occasional periods of liquid refrigerant return. There are fewer moving parts in a scroll compressor subject to wear compared to alternative compressor designs. Nonetheless, there are still many mechanical and electrical parts with close tolerances. Replacement of the compressor may be required during the normal service life of the dehumidifier.

Inspection and Initial Diagnosis

Generally, the compressor will have two basic failure modes, mechanical and electrical. The compressors are a hermetic design, meaning all components, including the motor, are in a sealed shell. It can be very difficult to determine which issue was the root cause of the failure in the field by inspection of the damaged compressor. For example, an initial bearing failure inside the compressor may create debris that contaminates motor windings. High current draw may be related to a bearing issue or a motor winding issue. The initial inspection must be combined with a final analysis of the machine when returned to working order to confirm diagnosis.

Specific items should be noted before the replacement to give the best indications of the failure and complete the diagnosis as the new compressor is installed. The following data should be taken to assist in diagnosis:

- Current draw for each leg of power (if the compressor will run and pump)
- High side and low side pressure (if the compressor will run and pump)
- Resistance of each leg to leg on three phase compressor or each leg to neutral on single phase compressors.
Check of continuity from each leg to ground.

Review of all system alarms including the relative timing of the alarms and mode of operation. It is important to note that other components or lines may have been damaged if the compressor has failed. At times the internal damage to a compressor creates extreme levels of vibration before complete failure. Refrigerant lines and connections may be damaged before the compressor stops. Inspect tubing and components of the system before completing the compressor replacement.

Compressor Replacement

- Refrigeration oil must be tested for acid and particulate during any compressor replacement. For the initial testing, the compressor sump should be used to sample the oil. Oil can be recovered through the Schrader port on the low point compressor shell or through the suction line connection after the compressor has been removed.
- Use Virginia KMP, New-Calgon Phase III, Sporlan Test-All, or equivalent oil test where oil is sampled into a container. Vapor sampling methods may not show particulate and should not be used.
- Read the oil test kit manufacturer’s instructions to determine if there is acid present in the oil. Determine if there are other contaminants by viewing the samples for darkness, cloudiness, or particulate.

The following procedures must be used depending on the results of the test above:

Any Compressor Service

- A new filter dryer must be installed when the system has been opened. See Section 5.6 for component replacements. If there is no acid or particulates indicated, the new compressor can be installed and run. Proceed to Testing and Final Diagnosis.

Acid Indicated

- Install a suction line filter shell and charcoal activated core such as a Sporlan or Emerson HH core type or equivalent. The acid levels will be monitored and several core changes may be required. Install ball valves on either side of the suction filter to facilitate these changes. Note that larger Desert Aire systems will have suction filter shells installed from the factory. The shell can be used with charcoal activated cores. Note that a “safety screen” may be required with some manufacturer’s cores to prevent small pieces of the core from dislodging and finding their way to the compressor. Follow filter shell and core manufacturer’s instructions.
- Review compressor and suction line for an area where future oil samples can be taken from the system. If an access fitting exists on the compressor shell below the oil level, no further action is needed. If this is not available, an access fitting can be located at the bottom of a trap in the suction line. Braze in a fitting as required to be able to remove an oil sample.
- Ensure there are access fittings directly upstream and downstream of the suction filter. There is typically one fitting installed on the suction filter. There may be a bulkhead fitting attached to the compressor suction side.
- Do not use acid neutralizing additives or other chemicals for acid removal. The refrigeration system must contain only oil and refrigerant. Precipitates of additives and acids may be considered contamination in the refrigeration system. Other compounds may be present in additives as carriers. Longterm effects of specific additives or compounds with a particular system or design are unknown without significant controlled testing.

Particulate Indicated
- Install a replaceable core liquid line filter shell. Note that larger Desert Aire systems will have replaceable core liquid line filter shells installed from the factory. The pressure drop levels will be monitored and several core changes may be required. Install ball valves on either side of the filter shell to facilitate these changes.
- Install a secondary filter such as Sporlan FS-series or equivalent 20 micron filter in the replaceable core.
- Ensure there are access fittings directly upstream and downstream of the liquid filter. There is typically one fitting installed on the filter shell. There is typically one fitting installed on the outlet side of the receiver.

Returning to Service
- See Section 5.6 for evacuation and charging.
- Restart unit and set unit to run compressors.
- Record the pressure drop across the suction filter and liquid line filter dryer.
- Check sight-glass indicator for moisture level.
- Monitor pressure drop across the liquid and suction filters during the first hour of operation. Compare the reading taken earlier. If the pressure differential across the filters is more than 5 PSI greater than the initial reading, isolate the filters using the valves installed and recover the refrigerant from the filters. Replace cores. If activated carbon filters were installed in the suction side to remove acid, replace with similar cores. If a secondary filter was installed in the liquid line core to remove particulate, install cores and secondary filter in this location.
- Run unit for 24 hours and review acid levels (if found previously) and pressure differentials.
 - If acid is found, replace with activated charcoal cores and test at 24 hour intervals until acids are at acceptable levels. Once acid is no longer detected, replace cores with standard filter elements. Remove outlet screens if they were required by filter manufacturer.
 - If the pressure differential across the liquid line filter is more than 5 PSI greater than the initial reading, replace cores and secondary filter with new components and test at 24 hour intervals until pressure drop is at acceptable levels. Once pressure differential is less than 5 PSI, remove secondary filter and replace cores.

Testing and Final Diagnosis

It is of critical importance to ensure that the system is operating as expected before unit is returned to normal service. Complete a Compressor Replacement Form located in the Installation and Operation Manual. Validation of this report allows for the continued coverage of the compressor under the original warranty.
It is possible that there was an internal defect in the compressor or normal mechanical wear occurred over time. Compressors longevity generally is a function of load, lubrication, electrical input conditions, and temperatures.

There is a cause for the compressor failures that must be identified before unit is placed back into full service. Both the identification of the cause of compressor failure and the proper cleanup of the system must be addressed to avoid repeat compressor damage.

5.2 Recommended Duct Design
You must use proper duct design to ensure that the dehumidifier operates efficiently and without problems. Undersized or restrictive ducts reduce the system airflow, which can cause premature compressor failure. Use the following diagrams as a guide when you design the duct system.

Figure 35 - Recommended Duct Designs for Desert Aire Dehumidifiers
5.3 **Pool Water Chemistry**

Pool chemistry must be maintained to ensure the proper pH, total alkalinity, calcium hardness, and free chlorine. NSPI recommends the following levels for pool chemistry:

- pH: 7.4 – 7.6
- Total Alkalinity: 100 – 150 ppm
- Calcium Hardness: 200 – 250 ppm (Plaster Pool)
- Free Chlorine: 1.0 – 3.0 ppm

Excessive chemical levels in the pool can be dangerous to users and can damage pool hardware, including the dehumidification system. The Desert Aire warranty does not cover equipment damaged by faulty pool chemistry.

5.4 **Recommended Controller Settings**

5.4.1 **Controller Set Points**

It is important to determine your comfortable set points and to avoid further controller adjustments. It takes time for the unit to establish equilibrium at a given set point. Therefore, continued set point adjustments will lead to high energy consumption and user discomfort. Continuous blower operation is recommended. This will reduce air stratification and assure that the refrigeration circuit is activated only when it is necessary.

RECOMMENDED SET POINTS:

- Humidity: 50% to 60 % RH
- Air Temperature: 2° to 4° F above the pool water temperature

WARNING

Never disable a dehumidifier in a pool room application unless the pool has been drained. Even when not in use, pool water continues to evaporate adding moisture to the air. During these periods of high humidity, moisture will seep into walls, ceilings, furniture, etc. Although the dehumidifier may be capable of regaining control of pool room conditions after re-start, in the long run, moisture damage to the pool room will become apparent.

5.5 **System Operating Modes**

The standard sequence of operation of a Desert Aire dehumidifier is relatively simple to understand. Note that the sequence may vary depending on which condenser options have been purchased and installed.

The compressor is designed to start on a call for dehumidification. As the refrigerant flows through the evaporator, it absorbs a great deal of heat from the airstream. This heat can either be rejected to the
air or to the pool, depending on which needs to be heated.

- If neither the air nor the water needs heat, it will be rejected to the remote outdoor condenser.
- If no outdoor condenser is available, the compressor will shut off rather than overheat the room air. Although the system cannot dehumidify the air when its compressor is off, overheating the space is unacceptable because it will cause occupant discomfort.
- For this same reason, the compressor can start and run on a call for air cooling if another heat sink is available.

5.6 Component Replacement, Charge, Evacuation, & Leak Instructions

Note that a new liquid line filter dryer will be required any time a refrigeration system is opened for servicing. New dryer should be of the same capacity as the original or larger.

Recovery

When there has not been a major refrigeration system leak, the system will contain refrigerant. This refrigerant must be either recovered to separate cylinders appropriate for the refrigerant type of isolated in a portion of the refrigeration system that will not be open for service. In all cases you must comply with Section 608 Refrigerant Recycling Rule of the Clean Air Act.

Recovery of Systems with a Refrigeration System Leak

As much refrigerant as possible must be recovered into separate refrigerant cylinders appropriate for the refrigerant being serviced. System pressure near the leak site should be monitored closely to ensure this area is not pulled to a vacuum. Isolate sections of the system as required and recover independently to avoid refrigerant contamination. Uncontaminated refrigerant can be reused in the refrigeration system it was recovered from.

Recovery of Systems without a Leak

Systems that do not have leaks, but still require refrigeration system service, may have charge isolated in receivers and condensers if these particular components do not require direct service.

Desert Aire dehumidifiers have different receiver sizes depending on the model and size. Condenser sizes and configurations may also vary. In general, larger receivers will come equipped with isolation valves that will allow for a portion of the charge to be contained in the receiver during servicing. Units equipped with remote condensers will have isolation valves located inside the unit cabinet near the area where the connections are made.

The compressor can be used to move refrigerant to the system components that will be used to temporarily hold the charge. Note that cooling a condenser by running as many fans as possible and/or cooling the coil surface with a stream of water can assist in storing charge.

The low side pressure should be monitored closely while using this procedure to store charge. Under no circumstances should a compressor be allowed to run in a vacuum. When most of the refrigerant is
isolated in the receiver and/or condensers, recover remaining charge into separate refrigerant cylinders appropriate for the refrigerant being serviced. Carefully track the amount of refrigerant charge removed as this exact amount should be placed into the units when re-charging.

Repair / Component Replacement

- If any portion of the system was at a vacuum, place dry nitrogen in the system until atmospheric pressure is reached.
- It is preferred that components are removed by heating the braze alloy to the remelt temperature and mechanically moving the component. When this is not possible due to proximity of cabinet structure or other components, a tubing cutter can be used to remove sections of piping. Where new tube is required for replacement, use dehydrated tube where possible. Use the same type of fittings as original. Route the pipe in the exact manner as originally routed.
- Use Type K per ASTM B 88 or ASTM B819 or Type ACR per ASTM B 280 copper tubing or for all tubes 1-1/8” and smaller.
- Tubes 1-3/8” and larger shall use Type K per ASTM B88 or ASTM B819.
- Cap sections of tube and components that are not actively being installed to prevent infiltration of moisture and contaminants.
- Use only braze alloys to join tube.
 - The selection of filler metals is highly dependent on the tube fit, clearance, and operator preference for flow. When flux is to be used, care should be taken to ensure that the flux is not introduced to the inside of the tube. It is recommended that phosphorous bearing alloys be considered for copper to copper connections due to their self-fluxing on copper to copper joints. Refer to alloy manufacturer’s guidelines for details on compatibility.
- Flow nitrogen into tubing to prevent the formation of copper oxides.
 - Copper oxides form rapidly when copper is heated to temperatures required by the brazing process and exposed to oxygen in the air. Copper oxides flake easily on the inside of the tubing and dislodge easily when the system is filled with refrigerant and oil. The particulate can move throughout the system and cause contamination on valves and other critical components. System filters may become fouled.
 - Flowing nitrogen into the system and ensuring that the inside of the tube is significantly free from oxygen while brazing ensures that oxides do not form. Schrader valves are placed throughout the system. These valves can be opened to allow for nitrogen to flow without generating pressure behind the braze joint that is being created.
- See Section 5.1.1 for special procedures related to compressor replacements.
- Replace liquid line filter dryer as last step in system repair. Note that the dryer will readily absorb moisture from the ambient air and must be open only for as long as required for installation.
- After completion of all repairs, pressure test system using nitrogen pressure decay test or nitrogen with tracer gas and appropriate leak detector.

Evacuation

- Carefully inspect pump and related equipment before connecting to system. Ensuring gaskets are in good condition and pump is capable of low vacuum levels can save time. Connect pump(s) to
as many locations as possible ensuring all locations are well sealed. If a field charge will be required, connecting a refrigerant tank to the system with a good valve is recommended. Any hose connections requiring purging of non-condensables can be done at this point.

- Evacuate the line and remote condenser to 400 microns measured at a point on the system furthest away from the pump.
 - Note that a gauge installed on the pump or in close proximity will give a lower reading while the unit is being evacuated.
 - A deep vacuum gauge should be used to evaluate the pressure. Compound manifold gauges do not allow for enough accuracy at the pressures required.
 - The system should be able to hold a vacuum under 500 microns for more than 10 minutes.
 - If pressure continuously rises at a rapid rate there is likely a system leak. Review all piping connections and correct before continuing evacuation.
 - Pressure rising above 500 microns and tending to stabilize at a higher pressure indicates the system has moisture above specifications. Continue evacuation until 500 microns or lower can be held for a minimum of 10 minutes.

Alternate Evacuation Specification by Process

After components have been repaired or replaced, the evacuation procedure should take place. Very small amounts of refrigerant may still be mixed with the oil in the system. Out-gassing of this refrigerant may interfere with the evacuation and vacuum decay testing.

IF, AND ONLY IF, a unit has been previously charged with refrigerant, and standard evacuation method has not been successful after 24 hours minimum using the standard procedure, the following alternate method should be used.

1. Check vacuum level. It should be a maximum of 1,500 microns absolute pressure. If this is not the case, review system for leaks and continue evacuation process until 1,500 microns is achieved.
2. Purge system with nitrogen to atmospheric pressure (0 gauge pressure). Ensure all portions of systems are at this pressure. Seal system and wait 10 minutes.
3. Start vacuum pump and draw system to 1,500 microns or less.
4. Purge system with nitrogen to atmospheric pressure (0 gauge pressure). Ensure all portions of systems are at this pressure. Seal system and wait 10 minutes.
5. Start vacuum pump and draw system to 500 microns. Seal system. System may rise to higher level, but should not rise above 1000 microns in 10 minutes timeframe. If unsuccessful, continue evacuation or check for leaks.

It is anticipated that the system was clean and tight from the original process and refrigerant only is mixed with oil. Alternate process should not be considered if there is chance of free water entering the system or the system was open for any significant time.
Charging

- Charge should be weighed into the system using a scale. In cases where the full charge was recovered, weigh in the charge with the recovered refrigerant and add the appropriate amount to meet the rating plate and field charge (if applicable). This should be placed in the high side of the system at the receiver.
- In cases where the full charge cannot be added to the system high side, the charge can be added to the low side of the system only when compressors are energized. If this is required, the compressors should be energized and the charge should be slowly metered into the suction line as far as possible upstream of the compressor. If the unit is equipped with an accumulator, the charge needs to be added to the port upstream of this location. The bulkhead fittings on the side of the unit should not be used for charge addition. Monitor superheat at the compressor suction inlet using the bulkhead fitting and a temperature sensor on the suction line near the compressor. Superheat should not drop below 10 degrees during the process of adding charge.

Testing and Final Diagnosis

Check the oil level in the compressor after the system has been running for 24 hours. Oil may have been contained in the liquid refrigerant when recovered from the system. Most of this oil will be returned if the recovered refrigerant is used. If new refrigerant is added, additional oil should be added based on the following ratio:

\[
\text{New Refrigerant Charge Added, lbs. x 0.352} = \text{Oil charge, oz.}
\]

It is of critical importance to ensure that the system is operating as expected before unit is returned to normal service. Test component replaced and function of the system. Many times a separate component in the system may have set a condition that causes the failure of another. Thoroughly test systems to ensure repeat failures do not occur.
5.7 System Rating Plate

The system rating plate is attached near the electrical enclosure of the dehumidifier.

![System Rating Plate]

Figure 36 - Typical SA Dehumidifier Rating Plate

5.8 Start-Up Supervision Supplemental Information

A Desert Aire factory start-up is an option which is normally purchased with the equipment. A factory start-up includes several key services:

- The expertise of an accomplished, factory-trained mechanic who will supervise the commissioning of the equipment.
- This Desert Aire representative will assist the installing contractor with filling out the Start-Up Report.
- He will also inspect the installation to make sure that the dehumidifier has been properly integrated with the rest of the equipment on the jobsite.
- Finally, he can train the maintenance personnel to operate and service the equipment if necessary.

A factory start-up does not include installation assistance. The installing contractor is responsible for ensuring that the system is ready for start-up when the Desert Aire representative arrives.

When the installing contractor is confident the system will be ready, he should contact the Desert Aire Sales representative to schedule the start-up. Please call at least two weeks before the desired start-up date to help prevent scheduling conflicts.
Factory Assisted Start-Up consists of a Desert Aire Service Department Technician to visit the job-site and provide supervisory experience to installing contractors as they perform the required procedures as outlined in our warranty activation start-up report. The company technician will also present an educational review of the dehumidifier’s operating and maintenance requirements. Factory Assisted Start-Up is not an installation bid & therefore the system must be ready to run before scheduling.

CST Start-Up is performed by a local Certified Service Technician who has been trained by Desert Aire. The CST performs all duties listed above. In addition they will supply the “items to be supplied for start-up” as listed below. Please note charges for refrigerant will apply if refrigerant is necessary to complete the start up.

Items to be completed by the installing contractor before any Start-Up can be scheduled:

- Dehumidifier leak checked and inspected for internal concealed damage – remove access panels and inspect the interior of the unit for transit damage. Contact Desert Aire immediately if damage is noted (262)946-7400
- Dehumidifier leveled and properly supported per the installation manuals recommendations. See section 2.1 of the LC/LV I&O manual for details
- Outside air duct filters and damper installed (if applicable) – See LC/LV I&O manual section 2.2 for details
- Condensate P Trap installed with heat trace for winter operation. See LC/LV I&O manual section 2.3 for details
- Remote condenser plumbed per Air Cooled I&O manual section 2.4, check valve installed in the hot gas discharge line (this valve is shipped separately with other controls), leak checked, evacuated, and charged if necessary. LC and LV Units require additional field charging. Refer to the charge label affixed to the unit for details. Refrigerant added ________ lbs (if applicable)
- Gas heater lines plumbed and purged / Record gas pressure entering the unit - ________ 'wc (if applicable)
- Refrigeration line set is clamped and the header supported per the Air Cooled I&O manual sec 2.3
- Pressure transducer and cord sent with the remote condenser installed on the liquid line header and wired to the Johnson 450 controller. See section 2.7 of the Air Cooled I&O manual for wiring details (if applicable)
- All electrical connections terminated and verified for proper voltage at the unit and the condenser (if applicable)
- All field controls, sensors - duct or wall sensor installed per the LC/LV I&O manual Section 2.7. (This sensor is shipped separately with other components) actuators installed and circuits verified that they are wired correctly. If you have questions, contact Desert Aire for instructions (262)946-7400.
- Water condenser circuit connected to dehumidifier with flow meter and balancing valves installed in circuit (if applicable)
- Water temp sensor well and temp sensor installed per I&O manual section 2.4 (This sensor is shipped separately with other components)
- Water flow verified and air purged from water the lines. (if applicable)
- Remove shipping blocks from under the compressor.

Items to be supplied by the installing contractor (Factory Assisted Start-Up only)

- Equipped service vehicle and service technician – Technician will be trained.
- Volt/Amp/OHM meters / Refrigerant Manifold Gauges
- Combustion Analyzer (SA Units only supplied with factory gas heating option)
- Air balancing equipment (magnehelic or manometer differential pressure gauge – one inch scale preferred)
- 50# of the appropriate refrigerant & scale.
- Hand pump for adding oil to compressors and 1 gallon of one of the following oils:
 - Copeland Ultra 32-3MAF
 - Lubrizol Emkarate RL32-3MAF
 - Park Emkarate RL32-3MAF
 - Nu Calgon 4314-66 (RL32-3MAF)
 (This is required on split systems based on line set calculations and trapping)
LC/LV/SA Startup Request Form

Unit Information
- **Model #**: ________________________________
- **Serial #**: ________________________________

Jobsite Information
- **Job site name**: ________________________________
- **Job Site Address**: ___

Contractor Information
Installing Contractor: ________________________________

- **Manager’s Name**: ________________________________ **Phone #**: ________________________________
- **Job Site Contact**: ________________________________ **Cell #**: ________________________________

Controls Company Name: ________________________________

- **Controls Contact**: ________________________________ **Cell #**: ________________________________

Test and Balance Company: ________________________________

If you are unable to supply any of the required equipment you must contact Desert Aire before returning this document.

I agree that all of the above has been completed as of _____________(Date) If a return trip must be scheduled due to insufficient job-site preparation an additional purchase order must be issued to Desert Aire for re-scheduling. **A two week minimum is needed to schedule start-up.** Once the form is completed please fax or email both pages to the Desert Aire service department. Fax (262) 946-7400 Email: service@desert-aire.com

Signature of project manager: ________________________________ (print) ________________________________ (sign)

Company Name: ________________________________ **Phone #**: ________________________________
5.9 **System Start-Up Report**

A copy of the system “Start-Up Report” can be found on the following pages. This report needs to be filled out thoroughly by a qualified service technician and returned to Desert Aire for warranty validation. Please ensure that the model and serial number of the unit are noted on this form. The model and serial number can be found on the system’s rating plate located on or near the electrical compartment service door. Failure to complete and return this form will void the unit’s warranty. These reports are also helpful when trying to correct existing problems. Should you need system diagnosis help, fax the completed worksheet to Desert Aire’s Service Department using the number provided. Be sure to include your name and a telephone number where you can be reached.
SA Series Start up Report

Important – To ensure warranty validation and continued customer satisfaction, complete this form and return it to Desert Aire immediately after start-up. Validation of this report activates the warranty.

Desert Aire Corporation
c/o Service and Warranty Department
N120W18485 Freistadt Road
Germantown, WI 53022
(800) 443-5276

Instructions

- **Warning** – Only trained, qualified personnel should install and service Desert Aire equipment. Serious injury or death can result from improper handling of this equipment. High voltage electrical components and refrigeration under pressure are present.

- Before continuing, read the Installation and Operations manual. If you do not fully understand the manual contact the Desert Aire Service Department. Please be prepared with the model and serial numbers located on the rating plate of the unit.

- Use one start up report per unit. Print or type all information. If there is not enough space available for readings or comments please attach additional pages directly to the start up report.

Location and Unit Information

<table>
<thead>
<tr>
<th>Installation Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Address:</td>
<td></td>
</tr>
<tr>
<td>Desert Aire Representative:</td>
<td></td>
</tr>
<tr>
<td>Dehumidifier Model #:</td>
<td>Serial #:</td>
</tr>
<tr>
<td>Remote Condenser Model #:</td>
<td>Serial #:</td>
</tr>
<tr>
<td>Form Completed By (Print):</td>
<td>Signed:</td>
</tr>
<tr>
<td>Company Name:</td>
<td>Date:</td>
</tr>
<tr>
<td>Company Address:</td>
<td>Telephone #: ()</td>
</tr>
<tr>
<td></td>
<td>Fax #: ()</td>
</tr>
<tr>
<td>Application (Pool, Spa, Other):</td>
<td></td>
</tr>
</tbody>
</table>
Proper Installation Checklist

- Installation manual read and understood
- Dehumidifier installed and leveled properly
- Condensate drain trapped and primed
- Verify that the power supply matches the rating plate
- Tighten all field and factory wiring
- Adjust and tighten blower belts if necessary
- Check rotation of blower on 3 phase units
- Check rotation of remote condenser fans.
- Open all refrigeration service valves and tighten packing nuts
- Check field and factory piping for leaks
- Inspect air filters. Clean or replace as necessary
- 120 volt circuit run to heat trace and powered up.

Unit Power Supply Information

<table>
<thead>
<tr>
<th>Voltage at power block - No motors running</th>
<th>Control Voltage - No Motors running</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformer 1</td>
<td>VA Rating</td>
</tr>
<tr>
<td>Transformer 2</td>
<td>VA Rating</td>
</tr>
<tr>
<td>Transformer 3</td>
<td>VA Rating</td>
</tr>
</tbody>
</table>

Line-set Installation – Refer to Installation and operation manual for instructions

<table>
<thead>
<tr>
<th>Lineset Length</th>
<th>Elevation Change</th>
<th>Additional R410A Added</th>
<th>Additional Oil Added</th>
<th>Flush Cycle Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot gas line trapped at every riser</td>
<td>Yes / No</td>
<td>LBS</td>
<td>OZS</td>
<td>Yes / No</td>
</tr>
<tr>
<td>Line-set pitched in direction of flow</td>
<td>Yes / No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Line-set Clamped per I/O Manual</td>
<td>Yes / No</td>
<td></td>
</tr>
</tbody>
</table>

Line Sizes

<table>
<thead>
<tr>
<th>Line Sizes</th>
<th>Circuit A</th>
<th>Circuit B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Return</td>
<td></td>
<td>LBS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fan Cycle Controller Settings – Refer to Installation and operation manual for instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENS</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>OUTR1</td>
</tr>
<tr>
<td>OUTR2</td>
</tr>
<tr>
<td>OUTR3</td>
</tr>
<tr>
<td>OUTR4</td>
</tr>
</tbody>
</table>
Air Flow Readings: Refer to Installation and Operations manual for correct balancing procedures.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporator Pressure Drop</td>
<td>ppm</td>
<td>VOC Setpoint*</td>
</tr>
<tr>
<td>Reheat Condenser Pressure Drop</td>
<td>ppm</td>
<td>VOC as read off the display*</td>
</tr>
</tbody>
</table>

Airflow Settings: Refer to Installation and Operations manual for correct balancing procedures.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unoccupied</th>
<th>Occupied</th>
<th>Event</th>
<th>Max OA</th>
<th>Purge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design OA</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
</tr>
<tr>
<td>Actual OA</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
</tr>
<tr>
<td>OA Setpoint</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
</tr>
<tr>
<td>Damper Pos</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Design Exhaust</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
</tr>
<tr>
<td>Actual Exhaust</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
<td>CFM</td>
</tr>
<tr>
<td>Low VFD Command</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Exhaust VFD</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Space Pressurization</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
</tr>
<tr>
<td>Return Duct Static Pres</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
</tr>
<tr>
<td>Supply Duct Static Pres</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
<td>°WC</td>
</tr>
</tbody>
</table>

The following pertains to indoor units only – Readings to be taken in highest CFM mode applicable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust Duct Static Pressure</td>
<td>°WC</td>
</tr>
<tr>
<td>Outside Air Duct Static Pressure</td>
<td>°WC</td>
</tr>
<tr>
<td>Exhaust Fan Total Static Pressure</td>
<td>(Pressure Diff from inlet of fan to the exhaust duct) °WC</td>
</tr>
</tbody>
</table>

Blower Information

<table>
<thead>
<tr>
<th>Amperage at Design Airflow</th>
<th>Supply Blower</th>
<th>Exhaust Blowers @ Highest Exhaust CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L1</td>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
<td>L2</td>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
<td>L3</td>
<td>L3</td>
</tr>
</tbody>
</table>

Temperature Readings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Air Temperature</td>
<td>°F</td>
<td>Room Relative Humidity</td>
</tr>
<tr>
<td>Outdoor Air Temperature</td>
<td>°F</td>
<td>Outdoor Relative Humidity</td>
</tr>
<tr>
<td>Water Temp (main pool)</td>
<td>°F</td>
<td>Water temp (spa or other)*</td>
</tr>
</tbody>
</table>

Desert Aire - SA Manual
Compressors and Refrigeration in Reheat Mode

<table>
<thead>
<tr>
<th></th>
<th>Circuit A</th>
<th>Circuit B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor #</td>
<td>amps</td>
<td>amps</td>
</tr>
<tr>
<td>RLA off nameplate</td>
<td>L1</td>
<td>L1</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>L2</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>L3</td>
</tr>
<tr>
<td>Amperage</td>
<td>Psig</td>
<td>Psig</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>L1</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>L2</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>L3</td>
</tr>
<tr>
<td>Head Pressure</td>
<td>Psig</td>
<td>Psig</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Suction Pressure</td>
<td>Psig</td>
<td>Psig</td>
</tr>
<tr>
<td>Refrigerant Sight Glass Clear</td>
<td>Yes / No</td>
<td>Yes / No</td>
</tr>
<tr>
<td>Superheat</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>Subcooling</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>Compressor Oil Level Sight Glass (level should be at least 3/4 full at completion of the start up)</td>
<td>½ ¾ F</td>
<td>½ ¾ F</td>
</tr>
</tbody>
</table>

Compressors and Refrigeration in Pool Water Heating Mode

<table>
<thead>
<tr>
<th></th>
<th>Circuit A</th>
<th>Circuit B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Pressure</td>
<td>Psig</td>
<td>Psig</td>
</tr>
<tr>
<td>Suction Pressure</td>
<td>Psig</td>
<td>Psig</td>
</tr>
<tr>
<td>Water Inlet Temperature</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>Water Outlet Temperature</td>
<td>°F</td>
<td>°F</td>
</tr>
</tbody>
</table>

Compressors and Refrigeration in Cooling Mode* (Remote Condenser Active)

<table>
<thead>
<tr>
<th></th>
<th>Circuit A</th>
<th>Circuit B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Pressure</td>
<td>Psig</td>
<td>Psig</td>
</tr>
<tr>
<td>Suction Pressure</td>
<td>Psig</td>
<td>Psig</td>
</tr>
<tr>
<td>Refrigerant Sight Glass Clear</td>
<td>Yes / No</td>
<td>Yes / No</td>
</tr>
<tr>
<td>Superheat</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>Subcooling</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>Compressor Oil Level Sight Glass (level should be at least 3/4 full at completion of the start up)</td>
<td>½ ¾ F</td>
<td>½ ¾ F</td>
</tr>
</tbody>
</table>
Auxiliary Water / Steam Coil Information*

<table>
<thead>
<tr>
<th>Signal</th>
<th>Inlet Temp</th>
<th>Outlet Temp</th>
<th>Discharge Air Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Coil</td>
<td>°F</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>Steam Coil</td>
<td>°F</td>
<td>°F</td>
<td>°F</td>
</tr>
</tbody>
</table>

Confirm Freeze Stat Operation

- Valve opens on freeze condition: Yes / No
- OA Damper Closes: Yes / No

Auxiliary Electric Heater Information*

<table>
<thead>
<tr>
<th>Signal</th>
<th>L1 Amps</th>
<th>L2 Amps</th>
<th>L3 Amps</th>
<th>Discharge Air Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Heater</td>
<td></td>
<td></td>
<td></td>
<td>°F</td>
</tr>
</tbody>
</table>

Building Management System Information*

<table>
<thead>
<tr>
<th>Communication Type (circle one)</th>
<th>BACnet MS/TP - BACnet Ethernet - Modbus - Lon - N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet MS/TP</td>
<td>Device Instance</td>
</tr>
<tr>
<td></td>
<td>MAC Address</td>
</tr>
<tr>
<td></td>
<td>Baud Rate</td>
</tr>
<tr>
<td>BACnet Ethernet</td>
<td>IP Address</td>
</tr>
<tr>
<td></td>
<td>Netmask</td>
</tr>
<tr>
<td></td>
<td>Gateway</td>
</tr>
<tr>
<td>Modbus</td>
<td>Baud Rate</td>
</tr>
<tr>
<td></td>
<td>Address</td>
</tr>
</tbody>
</table>

Additional Comments:

__

__

__

__

__

__

__

__

__
HE / HF Duct Furnace - Start-up Information and Test Data

Heatco Model No.: ___________ **Serial No.:** ___________ **Start-up Date:** ___________

Appliance Mfr.: ___________ **Model No.:** ___________ **Serial No.:** ___________

Burner Mfr.: ___________ **Burner Model No.:** ___________ **Serial No.:** ___________

Start-Up Contractor: ___________ **Technician:** ___________ **Phone:** ___________

Set-up Data:
Gas Type: ___________,
Voltage to Heater: ___________,
Inlet Supply Gas Pressure (Heater Off): ___________.

<table>
<thead>
<tr>
<th>Low Fire</th>
<th>High Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>" w.c.</td>
<td>" w.c.</td>
</tr>
<tr>
<td>" w.c.</td>
<td>" w.c.</td>
</tr>
<tr>
<td>" w.c.</td>
<td>" w.c.</td>
</tr>
</tbody>
</table>

Inlet Supply Gas Pressure (Heater On)

Gas Train Regulator Outlet Pressure (Measured At First Valve)

Gas Press. @ Burner Manifold

Flame Signal Reading

<table>
<thead>
<tr>
<th>mA/V</th>
<th>mA/V</th>
</tr>
</thead>
</table>

O₂ in Flue Gas

<table>
<thead>
<tr>
<th>%</th>
<th>%</th>
</tr>
</thead>
</table>

CO₂ in Flue Gas

<table>
<thead>
<tr>
<th>%</th>
<th>%</th>
</tr>
</thead>
</table>

CO in Flue Gas

<table>
<thead>
<tr>
<th>ppm</th>
<th>ppm</th>
</tr>
</thead>
</table>

Flue Gas Temp @ Discharge

<table>
<thead>
<tr>
<th>oF</th>
<th>oF</th>
</tr>
</thead>
</table>

Efficiency

<table>
<thead>
<tr>
<th>%</th>
<th>%</th>
</tr>
</thead>
</table>

Temperature Rise

<table>
<thead>
<tr>
<th>oF</th>
<th>oF</th>
</tr>
</thead>
</table>

Operation checklist

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Gas Lines & Connections Checked For Leaks</td>
<td>()</td>
<td>()</td>
<td>Airflow Proving Switch Installed</td>
</tr>
<tr>
<td>Condensate Drain Lines Installed</td>
<td>()</td>
<td>()</td>
<td>Auxiliary High Limit Installed</td>
</tr>
<tr>
<td>Complete Vent System Installed</td>
<td>()</td>
<td>()</td>
<td>Limits Function Properly</td>
</tr>
<tr>
<td>Flame Visible Through All Ports @ Low Fire (VA Burner Only)</td>
<td>()</td>
<td>()</td>
<td></td>
</tr>
</tbody>
</table>

Gas Pressure Switch Settings (If Present)

| Low 1 = | Low 2 = | High = |

SCEBM-2 “F-Lo” Setting (VA Burner Only)

SCEBM-2 “F-Hi” Setting (VA Burner Only)

Describe System Deficiencies (If Present):

Burner Start-Up Must Be Performed By Qualified Burner Technician

One Copy Of This Start-Up Data Sheet Must Be Returned To Heatco Inc., 50 Heatco Court, Cartersville, GA 30120 To Activate Warranty Coverage.
Compressor Replacement Form

Location and Unit Information

<table>
<thead>
<tr>
<th>Installation Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehumidifier Model #:</td>
<td>Serial #:</td>
</tr>
<tr>
<td>Form Completed By (Print):</td>
<td>Signed:</td>
</tr>
<tr>
<td>Company Name:</td>
<td>Date:</td>
</tr>
<tr>
<td>Company Address:</td>
<td>Phone #:</td>
</tr>
<tr>
<td>Fax #:</td>
<td></td>
</tr>
<tr>
<td>Defective Comp. Model #:</td>
<td>Serial #:</td>
</tr>
</tbody>
</table>

(If Tandem Set – Only list the specific failed compressor)

| New Compressor Model #: | Serial #: |

Compressor Condition at Time of Initial Review

- **Continuity (0 resistance) to Ground on one or more legs**
- **Compressor drawing higher current than design**
- **Compressor drawing locked rotor current**
- **Other (describe):**
 - **Runs without pumping: Pressures: _____ / _____**

- **Continuity (0 resistance) between two or more legs (3 phase units)**
- **Compressor drawing higher current than design**
- **Compressor drawing locked rotor current**
- **Other (describe):**
 - **Runs without pumping: Pressures: _____ / _____**

Final Determination of Failure

- Liquid Floodback
- Low Superheat
- Debris
- Insufficient Motor Cooling
- Defective Expansion Valve
- Low Sump Oil
- Other (Describe):

Diagnostic/Corrective Action Summary

Describe what corrective action was taken to prevent a repeat failure.

__

__

__

__

__

__

__
Compressor Replacement Checklist

<table>
<thead>
<tr>
<th>Required</th>
<th>Choose One</th>
<th>For Test Results Showing Acid or Particulate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid and particulate test completed</td>
<td>Unit Evacuated to 500 microns absolute and vacuum decay passed</td>
<td>HH Cores used – Acid Core</td>
</tr>
<tr>
<td>Liquid Line Filter Replaced</td>
<td>Alternate triple evacuation process used</td>
<td>SF filter used</td>
</tr>
</tbody>
</table>

Air Flow Readings: Refer to Installation and Operations manual for correct balancing procedures.

| Evaporator Static Pressure Drop | "wc | Supply Duct Static Pressure Drop | "wc |
| Reheat Condenser Static Pressure Drop | "wc | Return Duct Static Pressure Drop | "wc |

Temperature Readings

| Room Air Temperature | °F | Water Temp (Circle: Pool / Tower) | °F | Room Relative Humidity | % |
| Outdoor Air Temperature | °F | Water Temp (Circle: Pool / Tower) | °F | Outdoor Relative Humidity | % |

Compressors and Refrigeration in Reheat Mode

<table>
<thead>
<tr>
<th>Motor #</th>
<th>Circuit A – Use both sides for tandem set</th>
<th>Circuit B – Use both sides for tandem set</th>
</tr>
</thead>
<tbody>
<tr>
<td>(See wiring schematic for details)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge Pressure</td>
<td>PSIG</td>
<td>PSIG</td>
</tr>
<tr>
<td>Liquid Line Pressure (At access fitting nearest TXV)</td>
<td>PSIG</td>
<td>PSIG</td>
</tr>
<tr>
<td>Suction Pressure (At compressor)</td>
<td>PSIG</td>
<td>PSIG</td>
</tr>
<tr>
<td>Liquid Line Temperature (At access fitting nearest TXV)</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>Suction Temperature (At Compressor)</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>Refrigerant Sight Glass Condition (Clear, Intermittent Vapor, Flashing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp. Oil Level Sight Glass (Shut down comps., wait 5 minutes)</td>
<td>½ ¼ F</td>
<td>½ ¼ F</td>
</tr>
</tbody>
</table>

Compressors and Refrigeration in Cooling Mode

<table>
<thead>
<tr>
<th>Motor #</th>
<th>Circuit A – Use both sides for tandem set</th>
<th>Circuit B – Use both sides for tandem set</th>
</tr>
</thead>
<tbody>
<tr>
<td>(See wiring schematic for details)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge Pressure</td>
<td>PSIG</td>
<td>PSIG</td>
</tr>
<tr>
<td>Liquid Line Pressure (At access fitting nearest TXV)</td>
<td>PSIG</td>
<td>PSIG</td>
</tr>
<tr>
<td>Suction Pressure (At compressor)</td>
<td>PSIG</td>
<td>PSIG</td>
</tr>
<tr>
<td>Liquid Line Temperature (At access fitting nearest TXV)</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>Suction Temperature (At Compressor)</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>Refrigerant Sight Glass Condition (Clear, Intermittent Vapor, Flashing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp. Oil Level Sight Glass (Shut down comps., wait 5 minutes)</td>
<td>½ ¼ F</td>
<td>½ ¼ F</td>
</tr>
</tbody>
</table>